基于径向基函数优化的短期负荷预测方法  被引量:10

Short-term load forecasting method based on RBF parameter optimization

在线阅读下载全文

作  者:陈玉辰 王子健 姜宁 李扬[1] CHEN Yuchen;WANG Zijian;JIANG Ning;LI Yang(School of Electrical Engineering,Southeast University,Nanjing 210096,China;Economic and Technical Research Institute of Shaanxi Electric Power Company,Xi’an 710075,China)

机构地区:[1]东南大学电气工程学院,南京210096 [2]国网陕西省电力公司经济技术研究院,西安710075

出  处:《电力需求侧管理》2019年第2期36-40,共5页Power Demand Side Management

基  金:国家电网公司科技项目(XM2016020033815)~~

摘  要:为提高短期负荷预测模型的精确度,研究了一种基于径向基函数(radial basis function,RBF)神经网络参数优化的短期负荷预测方法。首先,对短期负荷影响因素进行分析,建立了计及温度累积效应的温度变量量化模型和计及负荷修正的日期类型变量量化模型;其次,建立基于RBF神经网络的短期负荷预测模型,分别基于近邻传播算法和遗传算法对RBF神经网络隐层节点的中心矢量和基宽参数进行优化;最后,基于某地区轻工业行业的夏季负荷数据进行了算例分析,结果表明,相比于未考虑参数优化的预测模型,可在一定程度上提高短期负荷的预测精度。In order to improve the accuracy of short-term load forecasting model, a short-term load forecasting method based on radial basis function(RBF)neural network parameter optimization is studied. Firstly, the influencing factors of short-term load are analyzed, and the temperature variable quantitative model considering the accumulated temperature effect and the date type variable quantitative model considering the load correction are established. Secondly, a short-term load forecasting model based on RBF neural network is established, and the center vector and base width parameters of hidden layer nodes of RBF neural network are optimized based on the nearest neighbor propagation algorithm and genetic algorithm respectively. Finally, a case study is carried out based on the summer load data of a light processing industry in a certain area. The results show that the short-term load forecasting accuracy can be improved to a certain extent compared with the forecasting model without considering parameter optimization.

关 键 词:短期负荷预测 温度累积效应 RBF神经网络 近邻传播法 

分 类 号:TK018[动力工程及工程热物理] TM714[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象