基于深度网络分级特征图的图像超分辨率重建  

Image super-resolution based on deep network with hierarchical feature maps

在线阅读下载全文

作  者:张一帆 杨欣[1] 朱松岩 周大可[1] ZHANG Yi-fan;YANG Xin;ZHU Song-yan;ZHOU Da-ke(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;School of Textile and Fashion Jiangsu College of Engineering and Technology,Nantong 226000,China)

机构地区:[1]南京航空航天大学自动化学院,江苏南京210016 [2]江苏工程技术学院纺织服装学院,江苏南通226000

出  处:《云南民族大学学报(自然科学版)》2019年第2期172-176,共5页Journal of Yunnan Minzu University:Natural Sciences Edition

基  金:国家自然科学基金(61573182)

摘  要:从低分辨率图像中提取特征图恢复高分辨率图像中的高频信息是超分辨率重建的一个关键问题,针对该问题提出一个新的基于卷积神经网络的超分辨率重建算法.网络结构由卷积层与子像素卷积组成,特征提取网络中卷积层提取低分辨率图像的特征,重建网络中子像素卷积神经网络作为上采样算子.针对不能充分利用多级特征图的问题,采用跳跃连接和特征图联结在特征提取网络末端跨通道融合特征图,同时降低特征图的维度.并在此基础上再次提取特征图应用于重建.实验结果表明,算法在PSNR、SSIM和人类视觉效果上与其他基于深度学习的算法相比有着显著的提高.Extracting feature maps from low-resolution images is a vital issue for restoring high-frequency textures in high-resolution images. To solve this problem,we propose a new super-resolution algorithm based on convolutional neural networks. The network structure of this paper consists of the convolutional layer and sub-pixel convolutional layer. The convolutional layer in the feature extraction network extracts feature maps from the low-resolution image,and the sub-pixel convolutional neural network is used as an up-sample operator. To solve the problem that the hierarchical feature maps fail to be fully utilized in reconstruction,this paper uses the skip connection and the concatenation of feature maps to fuse the feature maps across the channel at the end of the feature extraction network,and reduce the dimension of concatenated feature maps. Then it extracts the fused features from the feature maps after dimensionality reduction for reconstruction. The experimental results show that the accuracy of the proposed algorithm has significantly improved the effects of PSNR,SSIM,and human visual perception compared with other algorithms based on deep learning.

关 键 词:超分辨率重建 深度学习 卷积神经网络 子像素卷积神经网络 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象