检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖文强 王江宇[2] 陈焕新[2] 丁新磊 尚鹏涛 魏文天 周镇新 LIAO Wenqiang;WANG Jiangyu;CHEN Huanxin;DING Xinlei;SHANG Pengtao;WEI Wentian;ZHOU Zhenxin(China-EU Institute for Clean and Renewable Energy at Huazhong University of Science and Technology,Wuhan,Hubei 430074,China;School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan,Hubei 430074,China)
机构地区:[1]华中科技大学中欧清洁与可再生能源学院,湖北武汉430074 [2]华中科技大学能源与动力工程学院,湖北武汉430074
出 处:《制冷技术》2019年第1期45-50,54,共7页Chinese Journal of Refrigeration Technology
基 金:国家自然科学基金(No.51876070;No.51576074)
摘 要:建筑系统的能源消耗中,暖通空调系统能耗占大部分。降低暖通空调系统(HVAC)的能耗量对实现建筑节能具有重大意义。通过对暖通空调未来短期能耗进行预测,调整系统运行模式,可以实现有效的能耗降低。本研究使用了一种基于长短期记忆神经网络(Long Short-term Memory,LSTM)的暖通空调系统能耗预测方法,对某地供暖系统的能耗进行预测,将预测结果与真实值进行对比。最终结果表明,LSTM预测模型相比传统的预测方法效果更好。In the energy consumption of building systems, the energy consumption of heating, ventilation and air conditioning (HVAC) systems has always occupied a considerable part. Reducing the energy consumption of HVAC systems is of great significance for achieving building energy efficiency. By predicting the future short-term energy consumption of HVAC and adjusting the system operation mode, effective energy consumption can be reduced. For this purpose, a long short-term memory neural network (LSTM) based on HVAC system energy consumption prediction method is used to predict the energy consumption of a certain heating system, and the prediction results compare with the real value. Final results show that the LSTM prediction model has better prediction effect than the traditional one.
分 类 号:TU83[建筑科学—供热、供燃气、通风及空调工程] TU111.195
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28