检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐娇 王晚生 TANG Jiao;WANG Wansheng(College of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China)
机构地区:[1]长沙理工大学数学与统计学院,湖南长沙410114
出 处:《湖南理工学院学报(自然科学版)》2019年第1期13-19,共7页Journal of Hunan Institute of Science and Technology(Natural Sciences)
基 金:国家自然科学基金项目(11771060;11371074)
摘 要:现实生活中的很多物理现象只有将分数阶微积分同量子力学结合起来才能得到准确的表述,因此对薛定谔方程的研究也从整数阶扩充到了分数阶.本文利用时间分裂谱方法离散求解半经典体系中的Riesz空间分数阶非线性薛定谔方程.对该数值方法进行了稳定性分析和色散分析,并将不同网格下求得的数值解进行了对比.结果表明时间分裂谱方法具有高精度近似和无条件稳定性.Many physical phenomena in real life can only be accurately expressed by combining fractional calculus with quantum mechanics. Therefore, the study of Schrodinger equation is extended from integer order to fractional order. In this paper, time splitting spectral method was used to solve the Riesz space fractional nonlinear Schrodinger equation in the semiclassical regime. The stability analysis and dispersion analysis of the numerical method were carried out, and the numerical solutions obtained under different grids were compared for comparison. The results showed that the time-split spectrum method has high-precision approximation and unconditional stability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.140.23