检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张文硕[1] 许艳春[1] 谢术芳[1] Zhang Wenshuo;Xu Yanchun;Xie Shufang(Institute of Information Engineering and Art Design,Shandong Kai wen Collegeof Science and Technology,Jinan 250200.China)
机构地区:[1]山东凯文科技职业学院信息工程与艺术设计学院,山东济南250200
出 处:《江苏科技信息》2019年第4期41-43,共3页Jiangsu Science and Technology Information
摘 要:随着网络信息技术的飞速发展,人们在如此庞大的信息中如何找到有用的信息成为一个问题,文本挖掘技术在这样的背景下应运而生。为解决层次关系的文字资料的文本挖掘,文章提出一种新自动非负矩阵分解的层次聚类方法。实验结果对实际数据集进行了比较,结果表明,该方法对于所有情况的平均估计要优于其他传统方法,对于具有层次关系的文字资料的数据挖掘是一种较好的方法。With the rapid development of network information technology,how to find useful information in such huge information becomes a problem.Under the background,text mining technology emerged.In order to solve text mining of the hierarchical text information,this paper proposed a new automatic non-negative matrix factorization hierarchical clustering method.Experimental results on real data sets were compared,the results show that the method for all instances of the average estimation is better than other traditional methods.For hierarchical text data mining it is a kind of better method.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.163.178