检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王琦[1,2] 孙会彬[1] 江贝[1,3] 高松[1,2] 李术才 高红科[1,2] WANG Qi;SUN Hui-bin;JIANG Bei;GAO Song;LI Shu-cai;GAO Hong-ke(Research Center of Geotechnical and Structural Engineering,Shandong University,Jinan,Shandong 250061,China;State Key Laboratory for Geo-mechanics and Deep Underground Engineering,China University of Mining & Technology,Beijing 100083,China;School of Civil Engineering and Architecture,University of Jinan,Jinan,Shandong 250022,China)
机构地区:[1]山东大学岩土与结构工程研究中心,山东济南250061 [2]中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室,北京100083 [3]济南大学土木建筑学院,山东济南250022
出 处:《岩土力学》2019年第3期1221-1228,共8页Rock and Soil Mechanics
基 金:国家自然科学基金(No.51674154;No.51704125;No.51874188);中国博士后科学基金资助(No.2016M602144;No.2017T100491);山东省重点研发计划(No.2017GGC30101;No.2018GGX109001);山东省自然科学基金青年基金(No.ZR2017QEE013);山东大学青年学者未来计划项目(No.2018WLJH76)~~
摘 要:针对常规的现场岩体单轴抗压强度(UCS)测试方法周期长、成本高的问题,提出一种基于数字钻探测试技术预测岩体UCS的方法。利用自主研发的岩体数字钻探测试系统,开展了不同强度岩石试件的数字钻探试验和单轴压缩试验,基于支持向量机(SVM)建立了随钻参数与UCS的关系模型。作为模型输入参量的随钻参数,包括由传感器测定的钻进速率、转速、扭矩、推进力,也包括通过能量分析推导的岩石单位切削能ηc。结果显示,验证集中关系模型预测的UCS和单轴压缩试验测得的UCS相近,拟合优度R2为0.977,平均绝对误差MAE为3.037 MPa,表明基于SVM方法建立的随钻参数与UCS关系模型,在岩体UCS预测方面取得了较好的效果;同时表明数字钻探测试技术可实现对岩体UCS的有效预测。Uniaxial compressive strength(UCS) is an important index for classification of the surrounding rock and determination of the supporting parameters in underground engineering. The commonly used standard UCS tests are expensive, time-consuming and difficult to quantitatively evaluate the UCS of fragmented rocks because these rocks cannot be effectively cored. To solve the above problems, a method for predicting UCS of rock mass based on digital drilling test technology is introduced in this paper. The key to implementing this method is to establish a quantitative and universal relationship between the drilling parameters and the UCS.Therefore, the digital drilling tests and standard UCS tests of rock specimens with different strength values are carried out based on the laboratory rock mass digital drilling test system developed by the authors. A relational model between the drilling parameters and the UCS is established by support vector machine(SVM). The drilling parameters as model input parameters include the rotation speed N, drilling rate V, torque M and thrust F measured by the sensors, and the unit cutting energy ηc deduced from energy analysis by the authors as well. The research shows that the UCS predicted by the relational model in validation set is close to the UCS measured by the uniaxial compression test, the coefficient of determination R2 is 0.977, and the mean absolute error(MAE) is3.037 MPa. These results indicate that the relational model between the drilling parameters and the UCS based on SVM method is successful in the rock UCS prediction, and the digital drilling test technology could realize the effective prediction of UCS of rock mass.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.167.178