基于改进BP-GA方法的FPSO舷侧结构耐撞性能优化设计  被引量:2

Optimized Design of Crashworthiness of FPSO Side Structure Based on Improved BP-GA Method

在线阅读下载全文

作  者:高明星 刘刚[1,2] 黄一[1,2] 张延昌[3] GAO Mingxing;LIU Gang;HUANG Yi;ZHANG Yanchang(Dalian University of Technology, School of Naval Architecture, Liaoning Dalian 116024, China;Dalian University of Technology,State Key Laboratory of Structural Analysis for Industrial Equipment, Liaoning Dalian 116024, China;Marine Design and Research Institute of China, Shanghai 200011, China)

机构地区:[1]大连理工大学船舶工程学院,辽宁大连116024 [2]大连理工大学工业装备结构分析国家重点实验室,辽宁大连116024 [3]中国船舶及海洋工程设计研究院,上海200011

出  处:《船舶工程》2019年第1期28-33,共6页Ship Engineering

基  金:2015年工信部海洋工程装备科研项目:FPSO失效数据库及风险评估系统研发

摘  要:基于遗传算法和ABAQUS参数化有限元仿真技术,对传统的BP-GA优化方法进行改进,并采用改进的BP-GA方法对浮式生产储油卸油装置(FPSO)舷侧结构的耐撞性能进行优化,以验证其可行性和准确性。结果表明,与传统的BP神经网络相比,经遗传算法优化的BP神经网络具有更高的预测精度和更强的泛化能力;改进的BP-GA优化方法可在结构减重的基础上进一步提高结构的耐撞性能,能较好地适用于复杂的FPSO舷侧结构耐撞性优化设计。采用的优化方法具有通用性,可为抗爆性能的优化设计提供参考。The traditional BP-GA optimization method is improved based on the genetic algorithm and ABAQUS parameterized FEM simulation technology. The crashworthiness of a FPSO side structure is optimized by using improved BP-GA to verify its feasibility and precision. The results show that the BP neural network optimized by genetic algorithm has higher prediction accuracy and generalization ability than the traditional BP neural network. The improved BP-GA optimization method can further improve the crashworthiness of structures based on structural weight reduction, which is more suitable for the complex ship structure crashworthiness optimization. The proposed optimization method is versatile and can provide a reference for the optimization of the anti-explosion capacity.

关 键 词:浮式生产储油卸油装置 耐撞性能 BP-GA方法 BP神经网络 遗传算法 

分 类 号:U661.43[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象