检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋翠清[1,2] 郭轶博 刘尧[1] Cuiqing Jiang;Yibo Guo;Yao Liu(School of Management,Hefei University of Technology,Hefei 230009,China;Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education,Hefei 230009,China)
机构地区:[1]合肥工业大学管理学院,合肥230009 [2]过程优化与智能决策教育部重点实验室,合肥230009
出 处:《数据分析与知识发现》2019年第2期98-107,共10页Data Analysis and Knowledge Discovery
基 金:国家自然科学基金项目"基于社交媒体用户生成内容的产品创新需求发现方法研究"(项目编号:71571059);国家自然科学基金重点项目"大数据环境下的微观信用评价理论与方法研究"(项目编号:71731005);安徽省教育厅高校人文社会科学重大研究项目"社会媒体环境下企业舆情演化机理与管控研究"(项目编号:SK2014ZD054)的研究成果之一
摘 要:【目的】从社交媒体用户生成内容中发现未知情感词,构造领域情感词典,应用于汽车评论的情感分析。【方法】选取HowNet情感词典作为种子,以实际汽车评论作为语料,分别利用PMI和Word2Vec算法识别新词情感极性,根据集成规则对二者识别结果综合判定,通过情感分类实验对比显示本文算法的有效性。【结果】按照该方法构造的情感词典准确率比How Net情感词典提高21.6%,较分别使用PMI和Word2Vec算法构建的词典分别提升3.7%和2.1%,同时正面、负面情感词数量均有大幅增加。【局限】语料来源单一,应用于其他领域具有一定局限性。【结论】该方法构造的情感词典可有效应用于社交媒体文本情感分析。[Objective] This study aims to construct a domain sentiment lexicon by discovering unrecognized sentiment words from user-generated contents on Chinese social media to apply it to automotive comments sentiment analysis.[Methods] First,words in HowNet are selected as the seeds,and PMI and Word2Vec algorithm are used to calculate the sentiment polarity of the candidates respectively on real automative corpus.Then the results of the two discriminations are judged synthetically according to the ensemble rules.Finally the proposed method was shown effective by the comparison of the sentiment classification experiments.[Results] The accuracy rate of the lexicon constructed according to proposed method is 21.6% higher than that of HowNet.The lexicon constructed by PMI and Word2 Vec respectively increase 3.7% and 2.1%.Meanwhile the number of positive and negative emotional words are greatly increased.[Limitations] The source of corpus is single,and it has certain limitations in guiding other fields.[Conclusions] The sentiment lexicon constructed by this method can be applied to sentiment analysis of social media texts effectively.
关 键 词:社交媒体 情感分析 情感词典 PMI Word2Vec
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222