检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘红庆[1] 舒底清 刘燕[3] 黄雁[1] LIU Hong-qing;SHU Di-qing;LIU Yan;HUANG Yan(College of Logistics Information,Hunan Vocational College of Modem Logistics,Changsha 410131,China;Institute of Vocational Education,Hunan Provincial Research Institute of Education,Changsha 410005,China;College of Economics and Trade Management,Hunan Mechanical & Electrical Polytechnic,Changsha 410151,China)
机构地区:[1]湖南现代物流职业技术学院物流信息学院,长沙410131 [2]湖南教育科学研究院职业教育研究所,长沙410005 [3]湖南机电职业技术学院经贸管理学院,长沙410151
出 处:《控制工程》2019年第3期589-595,共7页Control Engineering of China
基 金:湖南省职业院校教育教学改革研究项目(ZJGB2016110)
摘 要:为提高数据流分类检测精度和检测效率,提出一种基于加权机制概念漂移策略的数据流高斯朴素贝叶斯分类检测算法。首先,对所提算法框架进行设计,利用输入数据流直接建立信息表,并构建基于信息表的高斯朴素贝叶斯分类器;其次,利用"Kappa统计"方法建立基于加权机制的概念漂移检测方法,根据输入数据波动性,分别采取线性函数和贝叶斯(非线性)函数进行检测,并利用专家点删除和信息表来处理经常性的概念漂移,实现漂移检测精度和效率的提升;最后,通过仿真实验,显示所提算法在SEA测试集、Hyperplane数据集和SQD测试集上的分类精度分别比选取的对比算法提高分类精度10.3%、16.8%和20.5%以上,验证了所用分类检测算法的有效性。In order to improve the accuracy and efficiency of data flow classification detection, a new Gauss naive Bayes classification method based on weighted mechanism concept drift detection is proposed. Firstly,the proposed algorithm framework is designed, and the input data stream is used to establish the information table directly, and the Gauss naive Bayes classifier based on the information table is also constructed;Secondly,the Kappa statistical method is used to establish the concept drift detection method. According to the input data fluctuation, linear function and Bias function(nonlinear) are taken to detect the concept drift, and expert point deletion and information table are used to deal with the recurrent concept drift, to improve the drift detection accuracy and efficiency;Finally, simulation experiments show that the classification accuracy on the SEA test set, Hyperplane data set and SQD data set is 10.3 %, 16.8 % and 20.5 % higher than that of the contrast algorithm, which verifies the effectiveness of the classification algorithm.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143