检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡丽芬 李刚[1] 齐慧博[1] 厉晓莹 HU Lifen;LI Gang;QI Huibo;LI Xiaoying(Communications of Institute,Ludong University,Yantai 264025,China)
机构地区:[1]鲁东大学交通学院,烟台264025
出 处:《中国造船》2019年第1期80-87,共8页Shipbuilding of China
基 金:国家自然科学基金项目(51509124;51681340360);工信部高技术船舶项目(2016[26])
摘 要:为了评估船首破损以后的倾覆概率,基于完整船舶瘫船稳性研究,尝试将破损船舶时域进水过程和倾覆概率计算结合。用Monte Carlo方法数值模拟某船破损以后的倾覆概率,采用四阶Runge-kutta方法求解横摇运动方程,研究不同载况下的倾覆概率和稳性高度变化。计算结果表明:相比完整船舶,破损船舶的短期和长期倾覆概率都增大;而在进水过程中,破损船舶的倾覆概率先减小后增大,到进水终了时刻达到最大。研究成果可望为破损船舶瘫船状态下的倾覆机理和波浪中破舱稳性衡准的制定提供技术支持。With the development of the second generation of intact stability criteria by The International Maritime Organization (IMO), it is imperative to establish damage stability criteria in the future. Dead ship stability failure is one of the five failure modes, and evaluation of capsizing probability for a damaged ship with this stability failure is difficult. This paper attempts to combine the flooding process in the time domain with the investigation of capsizing. In the simulation of a damage warship, the Monte Carlo method is applied, while Runge-Kutta method is applied in solving the roll motion equation. It is indicated that the short-term and long-term capsizing probability of a damage warship will be greater than that of the intact one, and maximal probability of capsizing appears at the end of the flooding process, which may provide technical support for study of capsizing mechanism under dead ship condition and establishment of damage stability criteria in waves.
关 键 词:破舱稳性衡准 瘫船稳性 倾覆概率 进水过程 时域计算
分 类 号:U661.2[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.97.63