基于条件互信息的低冗余短期负荷预测特征选择  被引量:18

Low Redundancy Feature Selection Using Conditional Mutual Information for Short-Term Load Forecasting

在线阅读下载全文

作  者:薛琳 黄南天[1] 赵树野 王盼盼 Xue Lin;Huang Nantian;Zhao Shuye;Wang Panpan(Electrical Engineering College,Northeast Electric Power University,Jilin Jilin 132012;Electric Power Economic Research Institute of State Grid East Inner Mongolia Electric Power Supply Co.Ltd.,Hohhot Inner Mongolia 010020)

机构地区:[1]东北电力大学电气工程学院,吉林吉林1320122 [2]国网内蒙古东部电力有限公司经济技术研究院,内蒙古自治区呼和浩特010020

出  处:《东北电力大学学报》2019年第2期30-38,共9页Journal of Northeast Electric Power University

基  金:国家自然科学基金资助项目(51307020);吉林省科技发展计划项目(20160204004GX;20160411003XH)

摘  要:为避免负荷预测特征集中冗余特征对预测精度的负面影响,降低预测器复杂度,提出一种基于条件互信息(CMI)和高斯过程回归(GPR)的短期负荷预测特征选择方法.首先,为降低建模所用特征量,根据与目标变量具有最大互信息的特征,选取剩余特征中可对目标变量提供最大信息增益的特征,计算CMI值并进行排序;然后,以GPR为预测器,以其预测结果平均绝对百分比误差为决策变量,按照特征CMI值排序顺序,采用序列前向选择方法,确定最优特征子集;最终,以最优特征子集构建GPR预测模型,并与皮尔逊相关系数法(PCC)和互信息(MI)2种特征选择方法分别结合支持向量机和反向传播神经网络开展对比实验.实验结果证明新方法降低了最优特征集合冗余度与预测模型复杂度,且具有更高的预测精度.In order to avoid the influence of redundancy features which will affect the predict accuracy of load forecasting and reduce the complexity of predictor,a method based on Gaussian Process Regression (GPR) and Conditional Mutual Information (CMI) for feature selection is proposed for short-term load forecasting.Firstly,to decrease the number of features when building a forecasting model,a feature is selected as the one with the highest mutual information (MI) with the target variable.Then,respect to the selected feature,the next feature which adds the largest information to the target variable is selected.The features are ranked in a descending order according to calculating the CMI.Secondly,according to the order of CMI,a sequential forward selection method with Mean Absolute Percentage Error of GPR is utilized for choosing the optimal feature subset.Finally,GPR with the optimal subset is used for building the forecasting model for load prediction,and compared with support vector machine and back propagation neural network combined with Pearson Correlation Coefficient (PCC) and MI respectively.The results show that the new method reduces the redundancy of the optimal feature set and has a higher forecast accuracy with lower complexity of structure.

关 键 词:短期负荷预测 特征选择 条件互信息 高斯过程回归 

分 类 号:TM733[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象