检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘洋[1] 王慧琴[1,2] 张小红[2,3] Liu Yang;Wang Huiqin;Zhang Xiaohong(School of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an,710055,China;School of Management,Xi'an University of Architecture and Technology,Xi'an,710055,China;School of Communication and Information Engineering,Xi'an University of Science and Technology,Xi'an,710054,China)
机构地区:[1]西安建筑科技大学信息与控制工程学院,西安710055 [2]西安建筑科技大学管理学院,西安710055 [3]西安科技大学通信与信息工程学院,西安710054
出 处:《数据采集与处理》2019年第2期341-348,共8页Journal of Data Acquisition and Processing
基 金:教育部归国留学人员科研扶持基金(K05055)资助项目;教育部高等学校博士学科点专项科研基金;博导类联合(20126120110008)资助项目
摘 要:粗糙集理论是一种处理边界对象不确定的有效方法。将粗糙集与K均值结合的粗糙K均值聚类算法,具有简单高效且可处理聚类边界元素的特点,但同时存在缺陷。针对粗糙K均值聚类算法对初始点敏感,经验权重设置忽略数据差异性,阈值设置不合理导致聚类结果波动性大的缺陷,本文提出结合蚁群算法的改进粗糙K均值聚类算法,改进的算法中使用蚁群算法中随机概率选择策略和信息素更新的正负反馈机制,以及采用动态调整算法阈值和相关权重的方法,对粗糙K均值聚类算法进行优化。最后采用UCI的Iris、Balance?scale和Wine数据集分别对算法进行实验。实验结果表明,改进后的粗糙K均值聚类算法得到的聚类结果准确率更高。Rough set theory is an effective method for dealing with uncertain boundary objects.The rough K-means clustering algorithm which combines rough set with K-means is simple and efficient.Though it can deal with clustering boundary elements,it has some drawbacks,for instance,the original rough K-means clustering algorithm is sensitive to the initial center,the set-up of empirical weigh ignores data difference,the unreasonable threshold setting engenders fluctuation of clustering results.To tackle these drawbacks,this paper proposed an improved rough K-means clustering algorithm combined with ant colony algorithm.The improved algorithm is optimized for rough K-means clustering by using random probability selection strategy and pheromone update of positive and negative feedback mechanisms in ant colony algorithm,and using dynamic threshold adjustment algorithm and associated weights method.Finally,the UCI's Iris set,Balance-scale set and Wine set are used for verification of the algorithm.The results show that this algorithm exhibits a higher clustering accuracy.
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145