检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马长林[1] 程梦丽 王涛 MA Chang-lin;CHENG Meng-li;WANG Tao(School of Computer,Central China Normal University,Wuhan 430079,China)
机构地区:[1]华中师范大学计算机学院,湖北武汉430079
出 处:《计算机工程与科学》2019年第4期708-712,共5页Computer Engineering & Science
基 金:国家自然科学基金(61003192)
摘 要:如何从海量文本中自动提取有价值的主题信息已成为重要的技术挑战,当下的研究方法大多数是在假设主题相互独立的前提下进行的,但实际上主题与主题之间有着复杂的内在联系。为解决以上问题,将相关性理论与改进的图分析方法相结合,基于主题相关性和术语共现性对主题检测进行建模,高精度语义信息和潜在共现关系同时被用于主题检测,来发现重要且有意义的主题和趋势,仿真实验验证了本文模型的有效性。How to automatically extract valuable topic information from massive texts has become an important technical challenge. Currently, most methods carry out their research under the assumption that topics are independent. However, there are complicated inherent relationships between topics. In order to solve the abovementioned problem, we combine the correlated theory with an improved graph analytical approach to model topic detection based on topic correlation and term co-occurrence. Semantic information with high accuracy and potential co-occurrence relationship are simultaneously considered for topic detection to discover important and meaningful topics and trends. Simulation results verify the validity of the proposed model.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145