出 处:《Science China Earth Sciences》2019年第4期631-642,共12页中国科学(地球科学英文版)
基 金:supported by the National Key Research and Development Plan(Grant No.2017YFC1501505);the National Natural Science Foundation of China(Grant No.41775006)
摘 要:The correlation between atmospheric gravity waves(GWs) and Transient Luminous Events(TLEs) has been poorly studied using both synchronous observations and numerical simulations. To investigate the modulation effects of GWs on TLEs,a troposphere-mesosphere quasi-electrostatic field model is developed in three-dimensional Cartesian coordinates, and the effects of GW perturbations on the initiation and optical emissions of sprite halos are simulated using the model. Simulation results indicate that the atmospheric density at lower ionosphere altitudes becomes inhomogeneous due to GW perturbations, and sprite halos tend to initiate in the GW troughs due to the lower electric breakdown threshold. GW perturbations cause the deformation of sprite halos, strong luminous regions distribute mainly along the GW troughs while optical intensities along the GW peaks is relatively weak. Larger GW perturbations lead to more pronounced deformation of sprite halos, however, stronger lightning discharges in the troposphere result in less optical perturbations of sprite halos. The observed luminous intensities and optical morphology of sprite halos are also affected by the observing orientations and the lightning polarities.The correlation between atmospheric gravity waves(GWs) and Transient Luminous Events(TLEs) has been poorly studied using both synchronous observations and numerical simulations. To investigate the modulation effects of GWs on TLEs,a troposphere-mesosphere quasi-electrostatic field model is developed in three-dimensional Cartesian coordinates, and the effects of GW perturbations on the initiation and optical emissions of sprite halos are simulated using the model. Simulation results indicate that the atmospheric density at lower ionosphere altitudes becomes inhomogeneous due to GW perturbations, and sprite halos tend to initiate in the GW troughs due to the lower electric breakdown threshold. GW perturbations cause the deformation of sprite halos, strong luminous regions distribute mainly along the GW troughs while optical intensities along the GW peaks is relatively weak. Larger GW perturbations lead to more pronounced deformation of sprite halos, however, stronger lightning discharges in the troposphere result in less optical perturbations of sprite halos. The observed luminous intensities and optical morphology of sprite halos are also affected by the observing orientations and the lightning polarities.
关 键 词:Three-dimensional quasi-electrostatic field model SPRITE HALOS Optical emission GRAVITY waves
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...