一种基于特征组合和卷积神经网络的心脏病预测新方法  被引量:8

A novel method of prediction for heart disease based on convolution neural networks

在线阅读下载全文

作  者:王健[1] 李孝虔 WANG Jian;LI Xiaoqian(College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China)

机构地区:[1]东北林业大学信息与计算机工程学院,哈尔滨150040

出  处:《黑龙江大学自然科学学报》2019年第1期115-120,共6页Journal of Natural Science of Heilongjiang University

基  金:中央高校基本科研业务费专项基金资助项目(DL11AB01)

摘  要:针对心脏病预测难的问题,提出了一种基于特征组合和卷积神经网络的心脏病预测方法。通过特征工程对数据进行预处理,减少噪声干扰;使用特征组合算法增强样本属性关联,生成特征矩阵;设计卷积神经网络对特征矩阵进行更高级抽象。该方法在UCI Heart Disease数据集上达到了0.898 9的预测精度,优于SVM、集成学习等传统机器学习方法,可作为相关领域专家判断的重要参考。Aiming at the difficulty in predicting heart disease, a predicting method for heart disease is proposed based on feature combinations and convolutional neural networks. This method will preprocess the data through feature engineering to reduce the noise interference. Then the feature combination algorithm is used to enhance the attribute association of the sample so as to generate the feature matrix. Finally, feature matrix is carried out more advanced abstraction by the design of convolutional neural network. This method can achieve the prediction accuracy of 0.898 9 in the dataset of UCI Heart Disease, which is superior to traditional machine learning methods such as SVM and ensemble learning, and could be used as an important reference for the judgment of domain experts.

关 键 词:心脏病预测 监督学习 数据清洗 特征工程 卷积神经网络 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象