压缩感知的稀疏字典学习在信号重建中的应用  被引量:1

Application of Compressed Sensing Sparse Dictionary Learning in Signal Reconstruction

在线阅读下载全文

作  者:朱春进 沈振军[1] 张瑞杰 

机构地区:[1]上海大学机电工程与自动化学院,上海200444

出  处:《工业控制计算机》2019年第4期69-71,共3页Industrial Control Computer

摘  要:针对时域信号在压缩感知的正交基下重建存在较大误差的问题,提出了一种字典学习方法稀疏表示连续时域信号。该方法基于K-奇异值分解(K-SVD)字典更新学习算法对原始数据稀疏化,在压缩感知理论下,通过观测矩阵得到的少量测量值利用正交匹配跟踪算法重新构建信号的非零元素系数矩阵,从而达到信号的近乎完美的重建。仿真实验结果表明,字典学习比传统正交基在信号重建上有更好的效果。A dictionary learning method is proposed to sparse represent continuous time-domain signals in this paper.This method is based on k-svd dictionary update learning algorithm to sparse the original data.Under the compression perception theory,a small amount of measured values obtained by observation matrix are reconstructed using orthogonal matching tracking algorithm to reconstruct the non-zero element coefficient matrix of the signal,so as to achieve the nearly perfect reconstruction of the signal.

关 键 词:正交基 压缩感知 K-SVD 字典学习 正交匹配跟踪算法(OMP) 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象