检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谷远利[1] 李萌[1] 芮小平 陆文琦 王硕[1] GU Yuan-li;LI Meng;RUI Xiao-ping;LU Wen-qi;WANG Shuo(Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Ministry of Transport,Beijing Jiaotong University, Beijing 100044, China;School of Earth Sciences andEngineering, Hohai University, Nanjing 211000, China)
机构地区:[1]北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室,北京100044 [2]河海大学地球科学与工程学院,南京211100
出 处:《交通运输系统工程与信息》2019年第2期223-230,共8页Journal of Transportation Systems Engineering and Information Technology
基 金:国家自然科学基金(41771478)~~
摘 要:城市不同区域网约车供需缺口预测可为车辆调度策略提供支持,从而提高车辆运行效率和乘客服务水平.为实现网约车供需缺口短时预测,提出一种基于时空数据挖掘的深度学习预测模型(Spatio-Temporal Deep Learning Model, S-TDL).该模型由时空变量模型、空间属性变量模型和环境变量模型3个子模型融合而成,可捕捉时空关联性、区域差异性和环境变化对供需缺口的影响.同时,提出特征聚类—最大信息系数两阶段特征选择方法,筛选与供需缺口相关性强的特征变量,提高训练效率,减少过拟合.滴滴出行实例分析证明,特征选择后的STDL模型预测精度显著优于BP神经网络、长短期记忆网络和卷积神经网络.The results of supply-demand gap prediction for online car-hailing services in different areas can provide support for online car-hailing scheduling system, thereby improving efficiency and service levels. In order to realize the short-term forecast of supply-demand gap for online car-hailing services, this paper proposes a novel spatio- temporal deep learning model (S- TDL). The model is composed of three sub- models: spatiotemporal variable model, spatial attribute variable model and environment variable model. It can capture the impact of spatio-temporal correlation, regional difference and environmental change on supply-demand gap. Moreover, a feature selection method named feature clustering-maximum information coefficient two-stage feature selection is proposed to screen out the important features which are strongly correlated with the supply- demand gap, improve training efficiency. The experimental results show that the S-TDL model after feature selection achieves the better performance than the existing methods.
关 键 词:城市交通 供需缺口预测 深度学习 网约车 时空关联性
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222