基于深度学习的网约车供需缺口短时预测研究  被引量:9

Short-term Forecasting of Supply-demand Gap under Online Car-hailing Services Based on Deep Learning

在线阅读下载全文

作  者:谷远利[1] 李萌[1] 芮小平 陆文琦 王硕[1] GU Yuan-li;LI Meng;RUI Xiao-ping;LU Wen-qi;WANG Shuo(Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Ministry of Transport,Beijing Jiaotong University, Beijing 100044, China;School of Earth Sciences andEngineering, Hohai University, Nanjing 211000, China)

机构地区:[1]北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室,北京100044 [2]河海大学地球科学与工程学院,南京211100

出  处:《交通运输系统工程与信息》2019年第2期223-230,共8页Journal of Transportation Systems Engineering and Information Technology

基  金:国家自然科学基金(41771478)~~

摘  要:城市不同区域网约车供需缺口预测可为车辆调度策略提供支持,从而提高车辆运行效率和乘客服务水平.为实现网约车供需缺口短时预测,提出一种基于时空数据挖掘的深度学习预测模型(Spatio-Temporal Deep Learning Model, S-TDL).该模型由时空变量模型、空间属性变量模型和环境变量模型3个子模型融合而成,可捕捉时空关联性、区域差异性和环境变化对供需缺口的影响.同时,提出特征聚类—最大信息系数两阶段特征选择方法,筛选与供需缺口相关性强的特征变量,提高训练效率,减少过拟合.滴滴出行实例分析证明,特征选择后的STDL模型预测精度显著优于BP神经网络、长短期记忆网络和卷积神经网络.The results of supply-demand gap prediction for online car-hailing services in different areas can provide support for online car-hailing scheduling system, thereby improving efficiency and service levels. In order to realize the short-term forecast of supply-demand gap for online car-hailing services, this paper proposes a novel spatio- temporal deep learning model (S- TDL). The model is composed of three sub- models: spatiotemporal variable model, spatial attribute variable model and environment variable model. It can capture the impact of spatio-temporal correlation, regional difference and environmental change on supply-demand gap. Moreover, a feature selection method named feature clustering-maximum information coefficient two-stage feature selection is proposed to screen out the important features which are strongly correlated with the supply- demand gap, improve training efficiency. The experimental results show that the S-TDL model after feature selection achieves the better performance than the existing methods.

关 键 词:城市交通 供需缺口预测 深度学习 网约车 时空关联性 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象