检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱明[1] 李希婷[2] 周锋[1] 王如刚[1] 赵力 ZHU Ming;LI Xiting;ZHOU Feng;WANG Rugang;ZHAO Li(College of Information Engineering,Yancheng Institute of Technology,Yancheng Jiangsu 224051,China;School of Information Science and Engineering,Southeast University,Nanjing 210096,China)
机构地区:[1]盐城工学院信息工程学院,江苏盐城224051 [2]东南大学信息科学与工程学院,南京210096
出 处:《电子器件》2019年第2期469-473,共5页Chinese Journal of Electron Devices
摘 要:支持向量机的训练需要求解一个带约束的二次规划问题,但在数据规模很大情况下,经典训练方法将变得很困难。提出一种基于改进的混合蛙跳算法的SVM训练算法。针对混合蛙跳算法搜索速度慢且容易陷入局部极值的缺陷,将模拟退火思想引入到混合蛙跳算法中,提出一种改进的混合蛙跳算法,并将其应用到人脸年龄估计中去。另外使用核主成分分析算法、Gabor小波变换以及局域二值变换来提取人脸的特征,将这3种特征分别特征层和决策层融合后,得到更为适合人脸年龄的特征向量。实验结果表明,使用该算法得到的人脸年龄段分类的分类准确率相对较高。Since training SVM requires solving a restrained quadratic programming problem which becomes difficult for large datasets,a improved Shuffled Frog Leaping Algorithm(SFLA)is proposed as an alternative to current algorithm.In order to overcome the defects of SFLA such as slow searching speed in evolution and local minimum,an improved algorithm in which the mechanism of Simulated Annealing(SA)is involved into basic SFLA is put forward.And it is applied into the facial age estimation.Besides the kernel Principal Component Analysis(PCA),Gabor wavelet transform as well as the LBP arithmetic are used as the feature extraction methods.Fusing these three feature extraction method in feature level and decision-making level,a more suitable method for extracting facial aging feature is obtained.The test results indicate that the algorithm enhances the convergence velocity outstandingly and averting the local extreme values effectively,and it is effective and feasible for SVM training,besides,the classification accuracy of age group is relatively higher.
关 键 词:特征融合 支持向量机 混合蛙跳 模拟退火 年龄估计
分 类 号:O235[理学—运筹学与控制论] TP391.41[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158