检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡海根[1] 周莉莉[1] 周乾伟 陈胜勇[1,2] 张俊康 HU Hai-gen;ZHOU Li-li;ZHOU Qian-wei;CHEN Sheng-yong;ZHANG Jun-kang(College of Computer Science & Technology,Zhejiang University of Technology,Hangzhou 310024,China;School of Computer Science and Engineering,Tianjin University of Technology,Tianjin 300384,China)
机构地区:[1]浙江工业大学计算机科学与技术学院,杭州310024 [2]天津理工大学计算机科学与工程学院,天津300384
出 处:《计算机科学》2019年第5期279-285,共7页Computer Science
基 金:浙江省自然科学基金(LY18F030025);国家自然科学基金(61802347;U1509207;31640053);中国微系统技术重点实验室基金(6142804010203)资助
摘 要:检测与跟踪相衬显微图像序列下的癌细胞对于分析癌细胞的生命周期以及开发抗癌新药具有非常重要的意义。传统的目标跟踪方法大多应用于刚性目标跟踪或单目标跟踪,而癌细胞是非刚性且不断裂变的多目标,这就大大增加了跟踪的难度。文中以相衬显微图像序列中的膀胱癌细胞为研究对象,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的癌细胞多目标跟踪方法。该算法采用基于检测的多目标跟踪方法,首先利用深度学习检测框架Faster R-CNN卷积神经网络实现癌细胞的检测,初步获得待跟踪的癌细胞;再利用扫描圆算法(Circle Scanning Algorithm,CSA)实现黏连细胞的检测优化,进一步提高黏连区域的细胞检测精度;最后提取综合特征描述子,对卷积特征、尺寸特征和位置特征进行加权求和,实现跟踪目标的综合描述,从而实现不同帧癌细胞间的高效关联匹配,最终实现癌细胞的多目标跟踪。一系列实验结果表明,相较于传统方法,所提方法不仅在癌细胞的检测和跟踪上性能有较大的提升,而且可以有效处理目标的遮挡问题。Detecting and tracking cancer cells under phase contrast microscopic images plays a critical role for analyzing the life cycle of cancer cells and developing new anti-cancer drugs.Traditional target tracking methods are mostly applied to rigid target tracking or single target tracking,while cancer cells are non-rigid multiple targets with constant fission,and it makes tracking more challenging.Taking bladder cancer cells in the sequence of phase contrast micrographs images as research object,this paper proposed a multi-target tracking method of cancer cells based on convolutional neural network.Firstly,through making use of detection-based multi-target method,the proposed algorithm adopted the deep learning detection framework Faster R-CNN to detect the bladder cancer cells and preliminarily obtain the cancer cells to be tracked.Then CSA(circle scanning algorithm)was utilized to further optimize the detection of adhesion cancer cells,and further improve the detection accuracy of cells in adhesion area.Finally,it integrated the features of convolution,size and position into a synthetic feature descriptor by using weighting methods,thus tracking multiple cancer cells by achieving the efficient correlation and matching of different frames of cancer cells.The results of a series of experiments show that this method can not only improve the accuracy of detecting and tracking cancer cell,but also deal with the occlusion problem effectively.
关 键 词:卷积神经网络 细胞检测 FASTER R-CNN 扫描圆算法 多目标跟踪
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28