检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜国庆[1] 赵梦[2] 杨涛[1] 彭如香[1] 孔华锋 Jiang Guoqing;Zhao Meng;Yang Tao;Peng Ruxiang;Kong Huafeng(Third Research Institute of Ministry of Public Security, Shanghai 201204,China;Xidian University, Xi’an 710126, Shaanxi,China;Wuhan Business University,Wuhan 430056,Hubei, China)
机构地区:[1]公安部第三研究所,上海201204 [2]西安电子科技大学,陕西西安710126 [3]武汉商学院,湖北武汉430056
出 处:《计算机应用与软件》2019年第4期51-54,共4页Computer Applications and Software
基 金:公安部科技强警基础工作专项项目(2018GBJC19);江西省经济犯罪侦查与防控技术协同创新中心开放基金资助课题项目(JXJZXTCX-024)
摘 要:恐怖主义被称为现代人类社会之癌,是世界各国政府和人民面临着的重大的挑战,应该引起全人类的重视。在使用全球恐怖主义数据库中的数据对恐怖主义活动进行研究时,从高维数据中提取关键的特征,是反恐研究中的重点和难点。针对全球恐怖主义数据库中特征的高维性、冗余性和数据不完整性的特点,分别采用最小冗余最大相关算法(mRMR)、基于支持向量机的递归删除算法(SVM-RFE)和基于随机森林的特征选择算法进行特征筛选与提取。利用K-近邻(KNN)分类器其对上述特征选择方法进行降维结果分析和分类结果比较。实验结果表明,特征选择算法不仅能提高分类性能还能提高分类效率,并且基于支持向量机的递归删除算法(SVM-RFE)选择的特征子集在预测恐怖主义活动时准确率更高。Terrorism, known as the cancer of modern human society, is a major challenge faced by governments and people around the world and should be brought to the attention of all mankind. When using the data in the global terrorism database to study terrorist activities, extracting key features from high-dimensional data is the focus and difficulty in counter-terrorism research. According to the characteristics of high dimensionality, redundancy and data incompleteness in the global terrorism database, we adopted minimum-redundancy maximum-relevancy(mRMR), recursive feature elimination based on support vector machine(SVM-RFE) and the feature selection algorithm based on random forest respectively to screen and extract features. K-nearest neighbor(KNN) classifier was used to analyze the dimension reduction results and compare the classification results of the above feature selection methods. The experimental results show that the feature selection algorithm can improve not only the classification performance but also the classification efficiency. And the feature subset selected by SVM-RFE has higher precision when predicting terrorist activities.
关 键 词:全球恐怖主义数据库 特征选择 mRMR SVM-RFE 随机森林
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.201