检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王庆华[1] 黄茹楠[1] 闫晓庚 程拓 Wang Qinghua;Huang Runan;Yan Xiaogeng;Cheng Tuo(College of Electrical Engineering, Yanshan University, Qinhuangdao Hebei 066000, China;Electrical Intelligence Business Department, China National Heavy Machinery Research Institute Co. Ltd., Xi’an 710023, China)
机构地区:[1]燕山大学电气工程学院,河北秦皇岛066000 [2]中国重型机械研究院股份公司电气智能事业部,西安710023
出 处:《计算机应用研究》2019年第5期1585-1588,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61472341)
摘 要:为了有效获取散乱点云中的尖锐特征点和边界特征点,提出一种利用多判据融合的特征点提取算法。首先利用一种改进的k-d tree构建点云拓扑,搜索样点的K局部邻域;然后利用法向夹角判定准则、核密度判定准则、场力和判定准则分别求取各个样点局部邻域的三个特征参数,最后通过加权计算特征参数得到每个样点的特征值与全局判定阈值,特征值比阈值大的点即为特征点。实验证明,该算法能有效地获取散乱点云中边沿特征点与尖锐特征点。This paper proposed an algorithm of extracting feature points based on multiple criterions,which aimed to extract boundary feature points and sharp feature points efficiently.Firstly,the algorithm built the point cloud topological structure based on a modified k-d tree approach to search for the K-nearest neighborhood of the sample point.Then,according to each K-nearest neighborhood points,it calculated three feature parameters based on vector angle criteria,kernel density criteria and field power criteria.Finally,according to the three parameters,it obtained feature discriminant parameters and the global fixed threshold.It recognized a point as the feature point when its value of discriminant parameter was bigger than the threshold.The experimental results show that the proposed algorithm can extract boundary points and sharp feature points effectively.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175