检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:江洪[1] 王鹏程[1] 李仲兴[2] JIANG Hong;WANG Pengcheng;LI Zhongxing(School of Mechanical Engineering,Jiangsu University, Zhenjiang 202013, China;School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 202013, China)
机构地区:[1]江苏大学机械工程学院,江苏镇江202013 [2]江苏大学汽车与交通工程学院,江苏镇江202013
出 处:《重庆理工大学学报(自然科学)》2019年第4期17-25,共9页Journal of Chongqing University of Technology:Natural Science
基 金:国家自然科学基金资助项目(51575241)
摘 要:为了进一步发挥空气悬架车身高度调节系统的性能,在Belief-Desire-Intention(BDI)框架下构建了目标车身高度控制智能体,并采用汤普森抽样算法构建智能体学习行为。结合车身高度调节系统模型,建立空气悬架车身高度智能控制系统。单一工况下的仿真结果验证了智能体学习行为的可行性以及学习结果的适用性;混合工况下的仿真结果验证了空气悬架车身高度智能控制系统的可行性和有效性。结果表明:在车身高度智能控制系统的控制下,簧上质量质心位置处的加权加速度均方根值上升了0. 45%,侧倾因子降低了22. 82%,在不恶化行驶平顺性的同时,提高了操纵稳定性。In order to further improve the performance of air suspension vehicle height adjustment system, the target height control agent was constructed under the framework of the Belief-Desire-Intention (BDI)model, and the agent learning behavior was constructed through Thompson sampling algorithm. The vehicle height intelligent control system was constructed by combining the traditional vehicle height adjustment system. The simulation results under a single working condition verified the feasibility and effect of reinforcement learning. The simulation results under mixed conditions verified the feasibility and effectiveness of the air suspension vehicle height intelligent control system. The results show that under the control of the intelligent control system of vehicle height, the root mean square value of the weighted acceleration at the position of mass center of spring rises by 0.45%, and the roll factor decreases by 22.82%. The control stability is improved without deteriorating the ride comfort.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.185.140