检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘龙飞 李胜[1] 赖舜男[1] LIU Long-fei;LI Sheng;LAI Shun-nan(School of Information Science and Technology,Peking University,Beijing 100871,China)
出 处:《图学学报》2019年第2期213-224,共12页Journal of Graphics
基 金:国家自然科学基金项目(61472010;61631001;61632003)
摘 要:退化图像复原是图像计算领域中的一个重要的难题。近年来以深度学习为代表的人工智能(AI)技术取得了快速的发展,越来越多的基于神经网络解决退化图像复原的研究工作出现。首先介绍了神经网络进行退化图像还原的主要技术并对图像复原的问题进行分类;然后利用神经网络解决退化图像复原问题中细分的多个主要问题,并对每个问题的当前研究现状与多种基于深度学习网络的解决方法的优势与局限性进行归纳分析,并给出与传统方法的对比。最后介绍了基于对抗神经网络的极限退化图像复原的新方法,并对未来前景进行展望。Restoration of degraded image is an important and challenging issue in the field of image computing.In recent years,artificial intelligence(AI),especially deep learning,has achieved rapid progress.More and more methods based on neural networks have been proposed to solve this problem.This paper first introduces the main techniques based on neural networks to restore the degraded images and makes a classification of the problems.Then we focused on the key neural networks to resolve the problems of each category.By reviewing the development of various network-based methods in the field of deep learning,we analyzed the advantages and limitations between these methods.Furthermore,a comparison between these methods and the traditional ones was also made.Finally,we put forward a new solution on restoration of extremely degraded image using GANs,sketching out the future work on the restoration of degraded image.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28