检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏照军 郭锐锋[2] 高岑[2] 王美吉[2] 李冬梅 SU Zhao-Jun;GUO Rui-Feng;GAO Cen;WANG Mei-Ji;LI Dong-Mei(School of Computer and Control Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang Institute of Computing Technology,Chinese Academy of Sciences,Shenyang 110168,China)
机构地区:[1]中国科学院大学计算机控制与工程学院,北京100049 [2]中国科学院沈阳计算技术研究所,沈阳110168
出 处:《计算机系统应用》2019年第5期185-189,共5页Computer Systems & Applications
摘 要:当今时代,科学技术高速发展,涌现出一批新技术,数据挖掘、机器学习等新科学领域被深入研究,众多智能算法逐渐出现,同时被应用到了不同的领域中.本文构建了一种基于BP (Back Propagation)神经网络和SVR(Support Vector Regression)支持向量回归机的组合模型.依托于农产品价格数据进行实例验证分析,结果表明相对于单一的预测模型, BP-SVR-BP组合模型在预测精度上有了很大的提升,拟合效果更加逼近真实数据曲线,能够客观真实的反应农产品物价变化规律.Nowadays, with the rapid development of science and technology, a number of new technologies have emerged. New scientific fields such as data mining and machine learning have been deeply studied. Many intelligent algorithms have emerged and applied to different fields. This paper constructs a combined model based on BP (Back Propagation) neural network and SVR (Support Vector Regression). Based on the agricultural product price data, the example verification analysis shows that compared with the single prediction model, the BP-SVR-BP prediction model has greatly improved the prediction accuracy. The fitting effect is closer to the real data curve, which can objectively and truly reflect the law of agricultural product price changes.
关 键 词:组合模型 BP神经网络 物价预测 SVR预测 农产品
分 类 号:F323.7[经济管理—产业经济] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68