基于特征融合的中文简历解析方法研究  被引量:3

Research of Chinese Resume Analysis Based on Feature Fusion

在线阅读下载全文

作  者:陈毅 符磊[4,2,3] 代云霞 张剑 CHEN Yi;FU Lei;DAI Yunxia;ZHANG Jian(Key Laboratory of Optical Communication and Networks, Chongqing University of Posts and Telecommunications,Chongqing 400065, China;Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei 230601,China;Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China;IMSL Shenzhen Key Lab, PKU-HKUST Shenzhen Hong Kong Institution, Shenzhen, Guangdong 518057, China)

机构地区:[1]重庆邮电大学光通信与网络重点实验室,重庆400065 [2]北京大学深圳研究院,广东深圳518057 [3]深港产学研基地深圳市智能媒体和语音重点实验室,广东深圳518057 [4]安徽大学计算机智能与信号处理教育部重点实验室,合肥230601

出  处:《计算机工程与应用》2019年第10期244-249,共6页Computer Engineering and Applications

基  金:国家自然科学基金(No.U1613209);深圳市科技计划项目(No.JCYJ20170307151743672;No.JCYJ20151030154330711)

摘  要:针对基于规则和统计的传统中文简历解析方法效率低、成本高、泛化能力差的缺点,提出一种基于特征融合的中文简历解析方法,即级联Word2Vec生成的词向量和用BLSTM(Bidirectional Long Short-Term Memory)建模字序列生成的词向量,然后再结合BLSTM和CRF(Conditional Random Fields)对中文简历进行解析(BLSTM-CRF)。为了提高中文简历解析的效率,级联包含字序列信息的词向量和用Word2Vec生成的词向量,融合成一个新的词向量表示;再由BLSTM强大的学习能力融合词的上下文信息,输出所有可能标签序列的分值给CRF层;再由CRF引入标签之间约束关系求解最优序列。利用梯度下降算法训练神经网络,使用预先训练的词向量和Dropout优化神经网络,最终完成对中文简历的解析工作。实验结果表明,所提的特征融合方法优于传统的简历解析方法。It’s typical for the Chinese resume analysis to apply the rule-based and statistical-based methods, suffering from the low efficiency, high cost and poor generalization ability. This paper proposes a Chinese resume analysis method based on feature fusion model. The concatenation of the word vectors generated by Word2 Vec and the word representation is generated from BLSTM neural network, then the text resume is analyzed by intergrating the BLSTM and CRF model(BLSTM-CRF). In order to improve the efficiency of Chinese resume resolution, the two vectors are concatenated into a new word representation. Furthermore, the BLSTM layer is used to fuse the contextual information of the words to be marked, and then the values of all possible tag sequences are exported to the CRF layer. Finally, according to the constraints of the front and rear labels, the CRF is utilized to obtain the optimal labeling sequence. All of the neural networks are trained by the gradient descent algorithm and are optimized by the pretrained word embeddings and Dropout. The experimental results show that the feature fusion method is superior to the traditional resume analysis schemes.

关 键 词:中文简历 简历解析 特征融合 词向量 神经网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象