The global dynamics of a discrete nonlinear hierarchical population system  被引量:7

在线阅读下载全文

作  者:Ze-Rong He Huai Chen Shu-Ping Wang 

机构地区:[1]Institute of Operational Research and Cybernetics Hangzhou Dianzi University,Hangzhou 310018,P.R.China

出  处:《International Journal of Biomathematics》2019年第2期217-237,共21页生物数学学报(英文版)

基  金:National Natural Science Foundation of China(No.11871185);Zhejiang Provincial Natural Science Foundation of China(LY18A010010).

摘  要:This paper is concerned with the global dynamics of a hierarchical population model,in which the fertility of an individual depends on the total number of higher-ranking members.We investigate the stability of equilibria,nonexistence of periodic orbits and the persistence of the population by means of eigenvalues,Lyapunov function,and several results in discrete dynamical systems.Our work demonstrates that the reproductive number governs the evolution of the population.Besides the theoretical results,some numerical experiments are also presented.

关 键 词:DOMINANCE RANK global stability REGENERATION number PERSISTENCE DISCRETE systems 

分 类 号:G[文化科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象