检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田文洪[1] 曾柯铭 莫中勤 吝博强 TIAN Wen-hong;ZENG Ke-ming;MO Zhong-qin;LIN Bo-qiang(School of Information and Software Engineering,University of Electronic Science and Technology of China Chengdu 610054)
机构地区:[1]电子科技大学信息与软件工程学院,成都610054
出 处:《电子科技大学学报》2019年第3期381-387,共7页Journal of University of Electronic Science and Technology of China
基 金:国家自然科学基金(61672136;61828202);四川省科技支撑计划(2016GZ0322)
摘 要:提出了一种基于卷积神经网络的驾驶员违规行为识别方法。首先,利用特定卷积神经网络对驾驶员的实时图像提取特征,然后并行对多种行为分别进行二分类。建立了一个真实场景下的驾驶员违规数据集,在此数据集上的测试说明了该方法的高效和良好的泛化能力。实验结果表明,该方法在约10万张图像的数据集中对打电话、吸烟、不系安全带3种行为分别达到了99.85%、99.62%、98.68%的识别率,同时使用当前较先进的Inception-v3和Xception模型测试,也获得了类似的识别效果。The unsafe behavior of the driver is one of the important causes of many incidents. This paper presents a method to recognize unsafe driving behaviors based on the convolutional neural network. Firstly, the characteristics of the real-time image are extracted by the specific convolutional neural network, and then three kinds of behaviors are classified into two categories in parallel. The data set of unsafe driving behaviors in a real scene is established. The test on this dataset illustrates the efficiency and good generalization of the method. The experimental results show that the method achieves 99.85%, 99.62% and 98.68% accuracy for calling, smoking and unbelting in the data set of about 100 000 images, which is comparable to the results obtained by recent advanced Inception-v3 and Xception models.
关 键 词:卷积神经网络 深度学习 模式识别 驾驶员不安全行为识别
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222