检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴志宇 朱云芳[1] 侯怡爽 陈维荣[1] WU Zhiyu;ZHU Yunfang;HOU Yishuang;CHEN Weirong(School of Electrical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
机构地区:[1]西南交通大学电气工程学院
出 处:《电力系统及其自动化学报》2019年第5期1-7,共7页Proceedings of the CSU-EPSA
基 金:国家重点研发计划资助项目(2017YFB1201001);国家自然科学基金资助项目(51307144)
摘 要:为改善基于小波电能质量信号扰动识别中存在数据量大、识别率不高的不足,提出一种电能质量扰动识别的小波压缩感知新方法。该方法首先确定扰动信号在小波域中的稀疏性,利用小波压缩感知降维,获得少量测量数据,应用正交匹配追踪算法求取各层稀疏系数组成稀疏矩阵;然后提取稀疏系数的最大值、标准差、峭度等组成特征向量,输入神经网络系统训练并实现分类识别。该方法具有采样数据少、处理方便、特征提取简单等特点。仿真结果表明,针对典型的7类单一扰动和复合扰动信号,所提方法在理想环境下识别率分别达到99.50%和99.43%,噪声环境下识别率分别达到97%和98%以上,拥有较强的鲁棒性和较好的准确性。To overcome the disadvantages in the power quality signal disturbance recognition based on wavelet transform,such as a large amount of data and a low accuracy rate,a novel power quality disturbance recognition method based on wavelet compressive sensing is proposed.First,the sparsity of disturbance signal in wavelet domain is determined.Second,wavelet compressive sensing is used to reduce dimensions,and a few measurement data can be obtained.Then,the sparsity coefficient in every layer can be obtained by orthogonal matching pursuit(OMP)algorithm to form a sparsity matrix.Finally,eigenvectors are formed by the extracted maximum,standard deviation,kurtosis,etc.,and they are further input into the neural network system for training so as to classify and identify the types of disturbance signal.This method is featured by less sampling data,easy process,and simple extraction of characteristics,etc.Simulation results demonstrate that the recognition rates obtained using the proposed method for seven typical single and mixed disturbance signals reach 99.50%and 99.43%respectively in an ideal environment,and above 97%and 98%respectively in a noisy environment,showing stronger robustness and better accuracy.
关 键 词:电能质量 压缩感知 扰动识别 小波变换 BP神经网络
分 类 号:TM711[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3