检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫时军 高强[1] 张建学 王经纬 Yan Shijun;Gao Qiang;Zhang Jianxue;Wang Jingwei(School of Mechanical Engineering,Nanjing University of Science & Technology,Nanjing 210094,China)
机构地区:[1]南京理工大学机械工程学院
出 处:《兵工自动化》2019年第5期29-33,共5页Ordnance Industry Automation
摘 要:为提高某随动负载模拟器加载系统的加载精度,设计一种基于灰预测单神经元PID自适应(grey prediction single neuron PID,GM/SN-PID)控制策略。通过分析随动负载模拟器的系统构成和工作原理,简化加载电机模型,根据转动惯量盘模型,建立随动负载模拟器模型。在传统PID控制的基础上引入灰预测模型用于初始化PID参数的整定,单神经元自适应控制器用于在线调节PID比例、积分和微分参数。仿真结果表明:该方法能提高加载系统的加载精度,具有较强的鲁棒性,优于传统PID控制。In order to improve the loading accuracy of certain type servo system loading simulator,a gray prediction single neuron PID control strategy is designed.By analyzing the system configuration and working principle of the servo system loading simulator,the model of the load motor is simplified,and a servo load simulator model is established according to the inertia moment disk model.Based on the traditional PID control,a gray prediction model is added to initialize the PID parameter setting,and a single neuron adaptive controller is added to adjust the PID proportional,integral and derivative parameters online.The simulation results show that the designed control method can improve the loading accuracy of the loading system,and it has strong robustness and is superior than the traditional PID control.
分 类 号:TJ303.8[兵器科学与技术—火炮、自动武器与弹药工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.116