检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:《实体瘤病理数据集建设和数据标注质量控制专家共识》筹备组 于观贞 陈颖[3] 褚君浩[4] 樊嘉 高强 高云姝 李郁 李庆利[8] 刘西洋[9] 宋志刚[10] 朱明华[11] 倪灿荣[11] Preparatory Group for Expert Consensus on Establishment of Pathological Data Set and Quality Control of Labeling for Solid Tumor
机构地区:[1]不详 [2]上海中医药大学附属龙华医院肿瘤科,上海200032 [3]海军军医大学(第二军医大学)长海医院消化内科 [4]华东师范大学多维度信息处理上海市重点实验室 [5]复旦大学附属中山医院肝外科,复旦大学肝癌研究所 [6]解放军总医院肿瘤内科 [7]西北工业大学生命学院 [8]华东师范大学多维度信息处理上海市重点实验室 [9]西安电子科技大学计算机科学与技术学院 [10]解放军总医院病理科 [11]海军军医大学(第二军医大学)长海医院病理科
出 处:《第二军医大学学报》2019年第5期465-470,共6页Academic Journal of Second Military Medical University
摘 要:病理诊断是肿瘤诊断的金标准,是临床治疗的基石。人工智能在肿瘤组织和细胞检测方面已经取得显著进展,有助于病理医师准确、高效、定量地识别出肿瘤细胞和(或)肿瘤特征,提高工作效率,弥补病理医师短缺。发展病理人工智能的前提是高效、精准的标注工作,即将各种类型和不同分化程度的肿瘤细胞勾勒出来。为了促进行业规范性发展、加强数据标注质量控制,肿瘤学、病理学、电子信息学等领域专家共同组建了《实体瘤病理数据集建设和数据标注质量控制专家共识》筹备组,致力于推进实体瘤病理人工智能标准化数据集的建设。本文从实体瘤病理数据的标本来源、标注团队、标注规则、标注流程、质量控制、疑难病例解决方案等多个环节介绍肿瘤细胞标注过程中达成的初步意见。Pathological diagnosis is the gold standard of tumor diagnosis and the cornerstone of clinical treatment.Artificial intelligence(AI)has made significant progress in detecting tumor tissues and tumor cells,which contributes to accurately,efficiently and quantitatively identifying tumor cells and/or tumor characteristics,leading to improved efficiency of pathologists and making up for the shortage of pathologists.The premise of pathological AI is efficient and accurate labeling,which is to outline the tumor cells of various types and different degrees of differentiation.To promote the standardization and data quality control of labeling,experts of oncology,pathology,electronic information science and other fields jointly discussed the pathological data set construction and data quality control for solid tumor,and thus an expert group was formed for a future expert consensus.Our group is dedicated to the construction of the AI-based standardized pathological data set for solid tumor.This paper introduces the primary opinions reached by our group in the process of tumor cell labeling from multiple aspects,including specimen source,labeling team,labeling rules,labeling process,quality control,and solutions for difficult cases.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222