检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:强延飞 刘雅婷 王永程 谷源涛[1] JIANG Yan-fei;LIU Ya-ting;WANG Yong-Cheng;GU Yuan-tao(Department Of Electronic Engineering,Tsinghua University,Beijing 100084,China;Southwest Electronics and Telecommunication Technology Research Institute,Chengdu Sichuan 610041,China)
机构地区:[1]清华大学电子工程系,北京100084 [2]西南电子电信技术研究所,四川成都610041
出 处:《计算机仿真》2019年第5期407-411,共5页Computer Simulation
摘 要:针对网络性能优化中短期流量预测模型选择问题,设计仿真,采用支持向量回归、神经网络(多层感知器)和线性时间序列(ARIMA)等多种模型,对MAWILab数据集中骨干网流量进行短期预测。应用一步预测方法,得到不同流量序列样本的预测结果,通过量化预测误差比较不同模型的预测性能,得出最终结论,在实际网络流量短期预测问题中,与ARIMA模型相比,具有非线性函数拟合功能的支持向量回归和神经网络可以取得更好的预测精度。For choosing a right model to predict short-term traffic in network performance optimization tasks,simulations wese designed to use support vector regression,neural networks(multilayer perceptrons) and linear time series(ARIMA) models to conduct prediction of actual backbone traffic from the MAWILab dataset.One step method was applied to obtain prediction results of quite a lot actual traffic samples,and prediction errors wese compared quantitatively to validate different model’s performance.The final conclusion is that,in comparison with traditional ARIMA model,support vector regression and neural networks can achieve better prediction accuracy in short-term traffic prediction tasks.
分 类 号:TP391.09[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.236.39