检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周小凤[1] 肖俊生[2] 王志春[2] ZHOU Xiaofeng;XIAO Junsheng;WANG Zhichun(Department of Electrical Engineering, Baotou Vocational Technical College, Baotou 014035, China;School ofInformation Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China)
机构地区:[1]包头职业技术学院电气工程系,内蒙古包头014035 [2]内蒙古科技大学信息工程学院,内蒙古包头014010
出 处:《铸造技术》2019年第5期496-499,共4页Foundry Technology
基 金:国家自然科学基金资助项目(61463041)
摘 要:介绍了粘结性漏钢的形成过程,对比分析了正常工况和粘结漏钢形成过程中结晶器壁的温度变化特征。通过BP神经网络建立了漏钢预报温度识别模型,用某钢厂200组典型历史温度数据对其进行训练;采用虚拟仪器平台搭建了漏钢预报实验系统并进行了模拟实验。结果表明,该方法预报实时、准确,具有一定的应用价值。The forming process of sticking breakout was introduced, and the temperature variation characteristics of mold wall in normal working condition and bonding process were compared and analyzed. BP neural network was used to establish the temperature identification model for molten steel leakage prediction. 200 groups of typical historical temperature data of a steel plant were used for training. The simulation experiment was carried out by using the virtual instrument platform to build the molten steel leakage prediction experiment system. The results show that the method is practical, accurate and certain application value.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.129.118