遥感影像变化检测样本自动抽样  被引量:6

Automatic sampling of remote sensing image change detection samples based on prior information of vector data

在线阅读下载全文

作  者:魏东升[1,2,3,4] 周晓光 WEI Dongsheng;ZHOU Xiaoguang(School of Geosciences and Info-Physics,Central South University,Changsha 410083,China;College of Civil Engineering,Central South University of Forestry and Technology,Changsha 410004,China;Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education,Changsha 410083,China;Key Laboratory of Non-ferrous Resources and Geological Hazard Detection,Changsha 410083,China)

机构地区:[1]中南大学地球科学与信息物理学院,长沙410083 [2]中南林业科技大学土木工程学院,长沙410004 [3]有色金属成矿预测与地质环境监测教育部重点实验室(中南大学),长沙410083 [4]有色资源与地质灾害探查湖南省重点实验室,长沙410083

出  处:《遥感学报》2019年第3期464-475,共12页NATIONAL REMOTE SENSING BULLETIN

基  金:十三五国家重点研发计划重点专项(编号:2016YFB0501403);国家自然科学基金(编号:41371366)~~

摘  要:在遥感影像结合矢量数据先验信息的变化检测中,需要从分割后的影像对象中抽取一定数量、具有相同类别属性的样本,其中不可避免地抽到类别属性不一致的样本,如何剔除这些样本是抽样过程中必须解决的重点问题,在目前已有的方法中,一般是通过人工目视判别完成的。样本的自动提取是实现自动变化检测的关键环节,本文提出一种变化检测样本自动抽样方法,主要包括样本的空间布设和异常样本自动检测两个环节。该方法首先利用矢量数据提取抽样图层,用抽样图层分割遥感影像,获取影像对象。其次是根据抽样区域范围、影像对象分布特征和地形特征布设变化检测样本。然后根据样本的先验类别属性构建特征空间向量,计算样本在特征空间的局部可达密度,由局部可达密度计算样本的异常度指数,并根据特征空间密度异常指数剔除异常样本,完成变化检测样本自动提取。最后以耕地、林地和居民地为例进行了抽样试验。结果表明,邻域参数k按样本布设总数的1/5-1/3取值、异常度阈值设定为80%时,可以实现异常样本0漏检率,能够准确、高效实现变化检测样本的自动提取。Some existing classification vector datasets are available for change detection in many regions, and some prior knowledge-such as position, shape, size, and class-are included in these datasets. The change detection method, which rely on remote sensing images and vector datasets, has become an important research focus. The automatic sampling method for the change detection of samples is the key technology in achieving automatic change detection. Therefore, an automatic sampling method based on the feature space density outlier index is proposed.The change detection of vector data/remote sensing images is realized by focusing on the spectral feature difference between the image objects needed to be detected and the samples. On the one hand, the samples must be able to differentiate the regional environment characteristics in a spatial distribution, and this aspect belongs to the problem realm of the sampling distribution method. On the other hand, the samples must include the image objects with no changes in the posterior class attribute, and this aspect is important in the detection of outlier samples. The automatic sampling method proposed in this study includes the spatial layout of samples and the automatic detection of outlier samples. The reasonable spatial distribution of samples is the precondition for improving the accuracy of change detection results,and an automatic detection method for the outlier samples is an important part of automatic change detection technology.In acquiring the samples for change detection, we initially extract a sampling layer from the vector data and use this layer to segment the remote sensing image. In this manner, the image objects can be extracted. Second, samples are extracted from the image objects, and we determine whether the spatial distribution of these samples directly yet reasonably affects the accuracy of the change detection results. On the one hand, the rationality of the sample space layout should reflect the correctness and uniqueness of the samples in typical n

关 键 词:遥感影像 矢量数据 抽样 变化检测 异常 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象