基于改进多种群遗传算法的尾矿坝形变预测  被引量:4

Deformation Prediction of Tailings Dam Based on Improved Multi-population Genetic Algorithm

在线阅读下载全文

作  者:李丰旭 杜宁[1] 王莉[1] 裴书玉 钟阳 LI Fengxu;DU Ning;WANG Li;PEI Shuyu;ZHONG Yang(College of Mining,Guizhou University Guiyang 550025)

机构地区:[1]贵州大学矿业学院,贵阳550025 [2]瓮福(集团)有限责任公司,贵阳550025

出  处:《工业安全与环保》2019年第6期29-33,共5页Industrial Safety and Environmental Protection

基  金:贵州省科技计划项目(黔科合基础[2017]1026);贵州大学研究生创新基金项目(研理工2017085)

摘  要:针对遗传神经网络(GA-BP)建立的尾矿坝形变预测模型易出现早熟现象、预测结果不稳定、容易陷入局部最优值的不足,引入一种具有混沌局部搜索的多种群自适应遗传算法。该算法以双种群寻优为基础,改进了遗传参数的计算方式,分别以种群进化中染色体适应度值的集中程度和空间距离的分布作为自适应交叉率、变异率的计算依据应用于不同种群中,提高了种群的多样性和遗传算法全局搜索的能力;同时引入混沌局部搜索技术(CLS),完善了遗传算法局部搜索能力的不足。采用改进的遗传神经网络模型对贵州省白岩尾矿坝三维变形数据进行预测,并与传统的GA-BP和AGA-BP模型预测结果进行比较。结果表明:改进后的模型预测精度更高,结果更加稳定,具有良好的预测效果。As the traditional GA-BP algorithm has low efficiency, instability and with failure of local search, a multi-group adaptive genetic algorithm with chaotic local search is proposed to improve the inadequacy of tailings dam deformation model established by GA-BP algorithm. Based on the double populations genetic algorithm, the calculation method of p c and p m is improved by the similarity of population fitness value and the spatial distance distribution of the individuals in population, and the diversity of the population and the global search ability of genetic algorithm are improved. And the CLS algorithm is introduced to improve the local search ability of genetic algorithm. The improved genetic neural network model is used to predict the 3D deformation data of the white rock tailings dam in Guizhou Province, and compared with the prediction results of the traditional GA-BP and AGA-BP models. The results show that the improved model has higher prediction accuracy, more stable results and better prediction effect.

关 键 词:遗传算法 BP神经网络 自适应策略 混沌局部搜索 形变预测 

分 类 号:TD926.4[矿业工程—选矿] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象