基于组合模型的城市轨道交通短时客流预测  被引量:42

Short-term Passenger Flow Prediction for Urban Railway Transit Based on Combined Model

在线阅读下载全文

作  者:杨静 朱经纬 刘博 冯诚 张红亮[3] YANG Jing;ZHU Jing-wei;LIU Bo;FENG Cheng;ZHANG Hong-liang(School of Civil Engineering and Transportation, Beijing University of Civil Engineering and Architecture,Beijing 100044, China;CHELBI Engineering Consultants. Inc., Beijing 100029, China;School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

机构地区:[1]北京建筑大学土木与交通工程学院,北京100044 [2]华杰工程咨询有限公司,北京100029 [3]北京交通大学交通运输学院,北京100044

出  处:《交通运输系统工程与信息》2019年第3期119-125,共7页Journal of Transportation Systems Engineering and Information Technology

基  金:国家重点研发计划(2018YFB1201601);北京市教育委员会科技计划一般项目(SQKM201810016006);北京建筑大学市属高校基本科研业务费(X18264)~~

摘  要:针对城市轨道交通短时客流的非线性分布特征,本文提出一种基于变点模型、小波变换、自回归滑动平均模型(ARMA)的组合预测模型.首先,利用变点模型将车站进站客流数据划分为具有不同特征的时间段;然后,使用自相关和偏自相关分析确定时间序列的平稳性;之后,分别采用ARMA模型与小波ARMA组合模型对北京市某地铁站的进站量进行客流预测,并对预测结果的误差进行了比较分析.经过对比分析表明,小波ARMA组合模型能够较好地预测出未来的短时客流,预测效果优于单一ARMA模型,计算速度也能够满足短时预测的需求,该方法可为城市轨道交通的运营组织提供参考建议.For short-term passenger flow in urban railway transit has the characteristics of nonlinear distribution, a combined forecasting model based on variable- point model, wavelet transform, and autoregressive moving average model is proposed. The model firstly uses variable- point model to divide the state interval, then uses autocorrelation and partial autocorrelation analysis to determine whether the time series is suitable for the ARMA model. Finally, ARMA single model and wavelet ARMA combined model are used to predict the passenger flow of a subway station in Beijing, and the error of the prediction results is compared and analyzed. The comparison shows that the prediction effect of the wavelet ARMA model is better than that of a single ARMA model, and the calculation speed can also meet the needs of short-term prediction. This method can provide reference for the operation organization of urban rail transit.

关 键 词:城市交通 短时客流预测 组合预测模型 变点模型 小波变换 自回归滑动平均 

分 类 号:U491.31[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象