检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周陈超[1,2] 陈群 李战怀[1,2] 赵波[3] 胥勇军[3] 秦阳 ZHOU Chenchao;CHEN Qun;LI Zhanhuai;ZHAO Bo;XU Yongjun;QIN Yang(School of Computer Science,Northwestern Polytechnical University,Xi′an 710072,China;Key Laboratory of Big Data Storage and Management,Northwestern Polytechnical University,Ministry of Industry and Information Technology,Xi′an 710072,China;Unit 95806 of PLA,Beijing 100076,China)
机构地区:[1]西北工业大学计算机学院,陕西西安710072 [2]西北工业大学大数据存储与管理工业和信息化部重点实验室,陕西西安710072 [3]中国人民解放军95806部队,北京100076
出 处:《西北工业大学学报》2019年第3期558-564,共7页Journal of Northwestern Polytechnical University
基 金:科技部国家重点研发计划(2016YFB1000703);国家自然科学基金(6173201,61332006)资助
摘 要:在线评论在用户的购买决策中起到日益重要的作用,电商网站提供海量的用户评论,但是个体很难充分利用所有信息。因此,对这些评论进行分类、分析和汇总是很迫切的任务。首次提出一个基于注意力机制和双向LSTM(bi-directional long short-term memory,BLSTM)的模型来判定评论对象的类别,用于评论的分类。模型首先使用BLSTM对词向量形式的评论进行训练;然后根据词性为BLSTM的输出向量赋予相应权重,权重作为先验知识能指导注意力机制的学习;最后使用注意力机制捕捉与类别相关的重要信息用于类别判定。在SemEval数据集上进行了实验,结果表明,模型能有效提高评论对象类别判定的效果,优于其他算法。Online reviews play an increasingly important role in users' purchase decisions. E-commerce websites provide massive user reviews, but it is hard for individuals to make full use of the information. Therefore, it is an urgent task to classify, analyze and summarize the massive comments. In this paper, a model based on attention mechanism and bi-directional long short-term memory (BLSTM) is used to identify the categories of these review objects for the classification of the reviews. The model first uses BLSTM to train the review in the form of word vectors;then according to the part-of-speech, the output vectors of the BLSTM are given corresponding weights. The weights as prior knowledge can guide the learning of attention mechanism to enhance the classification accuracy;finally, the attention mechanism is used to capture category-related important features which are used for category determination. Experiments on the SemEval data set show that our model outperforms the state-of-the-art methods on aspect category detection.
关 键 词:用户评论 评论对象类别判定 注意力机制 BLSTM
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.106.172