基于PCA初始化卷积核的CNN手写数字识别算法  被引量:11

CNN Handwritten Digital Recognition Algorithm Based on PCA Initialization Convolution Kernel

在线阅读下载全文

作  者:马义超 赵运基[1] 张新良[1] MAYichao;ZHAO Yunji;ZHANG Xinliang(College of Electrical Engineering and Automation,Henan University of Technology,Jiaozuo,Henan 454000,China)

机构地区:[1]河南理工大学电气工程与自动化学院

出  处:《计算机工程与应用》2019年第13期134-139,共6页Computer Engineering and Applications

基  金:河南省高等学校重点科研项目(No.13160025)

摘  要:针对卷积神经网络对手写数字识别训练在卷积核随机初始化情况下收敛速度慢和识别率低的问题,提出一种主成分分析(PCA)初始化卷积核的卷积神经网络(CNN)手写数字识别算法。算法首先选取训练样本集并将其送入CNN,在相应层对Feature Map进行全覆盖取图像块处理,然后进行分层PCA学习,将学习到的特征向量做为对应卷积层的卷积核参数进行初始化,最后再用这些卷积核对原始图像进行卷积操作。实验结果表明,与随机初始化卷积核的CNN手写数字识别算法相比,改进的算法在应用MNIST数据库训练时不仅收敛,而且在产生相同均方误差的情况下迭代次数少,识别率高。On the issues about the slow convergence speed and low identification rate in handwritten digit recognition, based on CNN(Convolutional Neural Network)in which the convolution kernels are initialized randomly, an improved algorithm in which the convolution kernels are initialized by PCA(Principal Component Analysis)is proposed. Firstly, training samples are selected and sent to CNN. In the corresponding layer feature map is processed by image block extraction, after that feature vectors extracted by the way of PCA in layered learning are used to initialize the convolution kernels. Finally, original images of the CNN are processed by these convolution kernels. Compared with the CNN handwritten digit recognition algorithm that randomly initializes the convolution kernel, the improved algorithm not only converges when applied to the MNIST database training, but also has fewer iterations and higher recognition rate when the same mean square error is generated.

关 键 词:主成分分析 卷积神经网络 卷积核 手写数字识别 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象