多重调和算子组高阶特征值的定量分析  

Quantitative Analysis of Higher-Order Eigenvalue for System of Poly-harmonic Operators

在线阅读下载全文

作  者:黄振明[1] HUANG Zhenming(Department of Mathematics and Physics,Suzhou Vocational University,Suzhou 215104,China)

机构地区:[1]苏州市职业大学数理部

出  处:《东莞理工学院学报》2019年第3期12-17,共6页Journal of Dongguan University of Technology

摘  要:对多重调和算子组高阶特征值进行带权估计,利用算子特征值理论、向量和矩阵运算、分部积分、测试函数和Rayleigh原理等方法,获得了用前n个特征值来估计第n+1个特征值上界的一个隐式和一个显式不等式,其界与空间维数及权函数有关,而与所论区域的度量无关,其结论进一步拓展了相关文献的结果。This paper describes weighted estimate of higher-order eigenvalue for system of poly-harmonic operators, estimating both implicit and explicit inequalities of the upper bound of the(n+1)th eigenvalue from the former n eigenvalues by using eigenvalue theory of operators, vector and matrix operation, integration by parts, trial function and Rayleigh theorem etc., which bound is dependent of the space dimension and weight function, but is independent on the measure of the domain in which the problem is concerned. The results expand the theorems in the bibliography.

关 键 词:多重调和算子组 高阶特征值 变分原理 上界不等式 定量分析 

分 类 号:O175.4[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象