检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李肖
机构地区:[1]暨南大学
出 处:《数字通信世界》2019年第6期118-121,152,共5页Digital Communication World
摘 要:高维孤立点检测算法已经在移动互联网、金融欺诈检测、网络入侵检测、生态系统失调、天气预报等风险控制领域得到了广泛的应用。基于距离的孤立点检测思想,结合高维数据特点,参考R树的相关操作算法,设计实现基于R树的高维孤立点检测算法。算法在剪枝策略,排序方法上较以前同种算法更有优势。在真实的数据集上的实验结果表明,该算法能在高维条件下有效地检测出孤立点,并且算法的效率高于嵌入循环算法。High dimension outlier detection algorithms have been found a wide application in the internet, financial fraud detection, network intrusions detection, ecological systems imbalance, the weather forecast and risk control. After having a reference on the distance concept in outlier detection, the characters of high dimension data and the relevant operations of R-tree. this paper designs and implements a high dimension outlier detection algorithm ODBR based on R-tree. ODBR has a better performance in cutting and soiling. Experimental results on real world dataset show that ODBR can efficiently detect outliers and has higher efficiency than the algorithm based on repetition.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49