融合用户和商品评论的双通道CNN推荐算法  

Dual channel CNN recommendation algorithm combining user and product reviews

在线阅读下载全文

作  者:冯兴杰[1] 徐一雄 曾云泽 FENG Xingjie;XU Yixiong;ZENG Yunze(School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)

机构地区:[1]中国民航大学计算机科学与技术学院

出  处:《现代电子技术》2019年第14期121-126,共6页Modern Electronics Technique

基  金:国家自然科学基金委员会与中国民用航空局联合基金项目(U1233113);国家自然科学青年基金资助项目(61301245);国家自然科学青年基金资助项目(61201414)~~

摘  要:基于评分矩阵的推荐模型目前被广泛应用,虽达到一定推荐精度,但忽略了评论中大量能够反映用户兴趣爱好的语义信息,且数据稀疏性问题依然存在。针对上述问题,提出融合用户评论和商品评论的双通道CNN推荐算法(C DCNN)。首先将用户和商品评论文本矢量化为词向量,再分别使用两个CNN网络对用户和物品进行特征提取,最后在共享层通过点积项将用户和物品的抽象特征映射到同一特征空间,从而预测出用户对特定商品的评分。在Amazon,Yelp,Beer三组公共数据集上进行实验,结果表明该模型在不同数据集上的MSE都比其他基准算法更小,且有效缓解了数据稀疏性问题。The recommendation model based on scoring matrix is widely used. However,it ignores the large amount of semantic information in the comments that reflects the user′s interests,and the data sparsity problem still exists although it has achieved certain recommendation accuracy. In allusion to the above problems,a Double-channel CNN recommendation algorithm(C-DCNN)that fuses user reviews and product reviews is proposed. The user and product review texts are vectorized as word vectors,and then the users and the items are extracted by using two CNN networks respectively. Finally,the abstract features of the user and the items are mapped to the same feature space through the dot product in the shared layer to predict the user′s scoring for a particular item. The results of some experiments on the public datasets of Amazon,Yelp,and Beer show that the model’s MSE on different datasets is smaller than other benchmark algorithms,which also alleviate the problem of data sparsity effectively.

关 键 词:CNN推荐算法 推荐系统 特征提取 文本矢量化 抽象特征映射 评分预测 

分 类 号:TN911.34[电子电信—通信与信息系统] TP301.6[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象