基于多层感知机的个性化链接排序预测  

PRMLP: Personalized link prediction based on multilayer perceptron

在线阅读下载全文

作  者:孙培杰 吴乐[1] SUN Peijie;WU Le(School of Computer and Information,Hefei University of Technology,Hefei 230601,China)

机构地区:[1]合肥工业大学计算机与信息学院

出  处:《合肥工业大学学报(自然科学版)》2019年第6期750-755,共6页Journal of Hefei University of Technology:Natural Science

基  金:中央高校基本科研业务费专项资金资助项目(JZ2016HGBZ0749);模式识别国家重点实验室开放课题基金资助项目(201700017)

摘  要:社交网络链接预测,即通过历史社交网络结构信息,预测未来一段时间内社交用户之间可能会产生新的链接关系,是社会网络分析中的一个重要问题。现有的模型挖掘了用户之间的浅层交互关系,或者通过深层网络去学习用户的特征描述。然而,由于社会网络数据极其稀疏,现有的模型在链接预测的表现上存在一定的提升空间。针对上述问题,文章提出基于多层感知机的个性化链接排序预测模型(PRMLP),从而实现了社交链接预测任务。PRMLP同时考虑了用户之间的交互关系,并采用了多层网络结构深入挖掘社会网络的拓扑结构,因此能够学习得到更精准的用户特征描述。文章针对模型训练中正负样本不平衡的问题提出了解决方案,在2个真实数据集进行的实验表明,文中提出的基于多层感知机的个性化链接排序预测模型相对于现有的其他链接预测模型表现更优。Link prediction is the task of predicting the possible link relationships between users based on the current social network structure,which plays an important role in social network analysis. The current solutions either model shallow interaction relationships between users or simply adopt deep learning models for the prediction task. Nevertheless,due to the sparsity of the social network data,the performance of these methods is not satisfactory. In this paper,a new model of personalized link prediction based on multilayer perception named PRMLP is proposed. Specifically,to deal with the data sparsity problem,PRMLP model adopts a multilayer perception neural network that considers both the complementary advantage of the shallow user interaction relationship and the deep network structure for learning useful user representations. Furthermore,a solution to deal with the data imbalance problem in model learning process that there are much more negative links than the positive links in the social network is proposed. The experiments on two real datasets demonstrate that the proposed method outperforms the state-of-the-art methods.

关 键 词:多层感知机 社交网络 链接预测 个性化信息 神经网络 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象