基于相位同步的癫痫信号识别与分析  被引量:2

Recognition and Analysis of Epileptic Signal Based on Phase Synchronization

在线阅读下载全文

作  者:周梦妮 牛焱 曹锐 阎鹏飞 相洁 ZHOU Mengni;NIU Yan;CAO Rui;YAN Pengfei;XIANG Jie(College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China;College of Software,Taiyuan University of Technology,Taiyuan 030024,China)

机构地区:[1]太原理工大学信息与计算机学院,太原030024 [2]太原理工大学软件学院,太原030024

出  处:《计算机工程》2019年第7期291-295,302,共6页Computer Engineering

基  金:国家自然科学基金(61503272,61305142,61373101,61741212);中国博士后科学基金(2016M601287);山西省自然科学基金青年项目(2015021090,201601D202042);山西省回国留学人员科研项目(2016-037)

摘  要:针对临床人工诊断癫痫信号效率低下的问题,建立一种基于相位同步的癫痫信号自动诊断模型。使用相位锁定值衡量各脑区间不同状态下的同步化程度,构建对应的脑功能网络连接矩阵,提取聚类系数和特征路径长度2种全局属性作为输入支持向量机的训练特征,使用六折交叉验证的方式对发作间期及发作期的信号进行分类识别。实验结果表明,加权网络的分类效果优于二值网络,其平均准确率为83.4 %,单一属性难以全面反映癫痫患者2种状态下的功能网络连接差异,多数患者在gamma和beta频段取得较好的分类效果。To address the low efficiency of clinical manual diagnosis of epilepsy,this paper establishes an automatic diagnosis model of epilepsy signal based on phase synchronization.First,the model use Phase Locking Value (PLV) to measure the degree of synchronization of brain regions in different states and constructs a corresponding brain function network connection matrix.Then,the two global attributes,clustering coefficient and characteristic path length,are extracted as training features to input onto Support Vector Machine (SVM).Finally,6-fold cross-validation method is used for the classification and identification of interictal and ictal signals.Experimental results show that the classification effect of the weighted network is better than that of the binary network.The average accuracy of the weighted network is 83.4 %.Single attribute is not enough to fully reflect the difference in functional network connections in two states of epilepsy,and most patients achieve better classification results in gamma and beta bands.

关 键 词:癫痫 相位锁定值 同步 聚类系数 特征路径长度 支持向量机 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象