检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:颜梦香 姬东鸿[1] 任亚峰 YAN Mengxiang;JI Donghong;REN Yafeng(School of Cyber Science and Engineering,Wuhan University,Wuhan Hubei 430072,China;Collaborative Innovation Center for Language Research and Service,Guangdong University of Foreign Studies,Guangzhou Guangdong 510420,China)
机构地区:[1]武汉大学国家网络安全学院,武汉430072 [2]广东外语外贸大学外语研究与语言服务协同创新中心,广州510420
出 处:《计算机应用》2019年第7期1925-1930,共6页journal of Computer Applications
基 金:国家自然科学基金资助项目(61702121,61772378)~~
摘 要:针对虚假评论识别任务中传统离散模型难以捕捉到整个评论文本的全局语义信息的问题,提出了一种基于层次注意力机制的神经网络模型。首先,采用不同的神经网络模型对评论文本的篇章结构进行建模,探讨哪种神经网络模型能够获得最好的篇章表示;然后,基于用户视图和产品视图的两种注意力机制对评论文本进行建模,用户视图关注评论文本中用户的偏好,而产品视图关注评论文本中产品的特征;最后,将两个视图学习的评论表示拼接以作为预测虚假评论的最终表示。以准确率作为评估指标,在Yelp数据集上进行了实验。实验结果表明,所提出的层次注意力机制的神经网络模型表现最好,其准确率超出了传统离散模型和现有的神经网络基准模型1至4个百分点。Concerning the problem that traditional discrete models fail to capture global semantic information of whole comment text in deceptive review detection,a hierarchical neural network model with attention mechanism was proposed. Firstly,different neural network models were adopted to model the structure of text,and which model was able to obtain the best semantic representation was discussed. Then,the review was modeled by two attention mechanisms respectively based on user view and product view. The user view focused on the user s preferences in comment text and the product view focused on the product feature in comment text. Finally,two representations learned from user and product views were combined as final semantic representation for deceptive review detection. The experiments were carried out on Yelp dataset with accuracy as the evaluation indicator. The experimental results show that the proposed hierarchical neural network model with attention mechanism performs the best with the accuracy higher than traditional discrete methods and existing neural benchmark models by 1 to 4 percentage points.
关 键 词:注意力机制 虚假评论 离散特性 神经网络 长短期记忆网络
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3