基于逆向习得推理的网络异常行为检测模型  被引量:11

Network abnormal behavior detection model based on adversarially learned inference

在线阅读下载全文

作  者:杨宏宇[1] 李博超 YANG Hongyu;LI Bochao(School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)

机构地区:[1]中国民航大学计算机科学与技术学院

出  处:《计算机应用》2019年第7期1967-1972,共6页journal of Computer Applications

基  金:国家自然科学基金民航联合研究基金资助项目(U1833107);国家科技重大专项(2012ZX03002002);中央高校基本科研业务费资助项目(ZYGX2018028)~~

摘  要:针对网络异常行为检测中因数据不平衡而导致召回率低的问题,提出一种基于逆向习得推理(ALI)的网络异常行为检测模型。首先,去除数据集中用离散数据表示的特征项,并对处理后的数据集进行归一化以提高模型的收敛速度与精度;然后,提出改进的ALI模型,通过ALI训练算法用仅由正样本所构成的数据对其进行训练,并利用已训练完成的改进ALI模型处理检测数据以生成处理后的检测数据集;最后,依据异常检测函数计算检测数据与处理后的检测数据之间的距离来判断数据是否异常。与单类支持向量机(OC-SVM)、深层结构能量模型(DSEBM)、深度自编码高斯混合模型(DAGMM)和生成对抗网络异常检测模型(AnoGAN)的对比实验结果表明,所提模型的准确率提升了5.8~17.4个百分点,召回率提升了1.4~31.4个百分点,F 1值提升了14.18~19.7个百分点。可知所提出的基于逆向习得推理的网络异常行为检测模型在数据不平衡时仍具有较高的召回率和检测精度。In order to solve the problem of low recall rate caused by data imbalance in network abnormal behavior detection,a network abnormal behavior detection model based on Adversarially Learned Inference (ALI) was proposed. Firstly,the feature items represented by discrete data in a dataset were removed,and the processed dataset was normalized to improve the convergence speed and accuracy of the model. Then,an improved ALI model was proposed and trained by ALI training algorithm with a dataset only consisting of positive samples,and the improved ALI model which had been trained was used to process the detection data to generate the processed detection dataset. Finally,the distance between detection data and the processed detection data was calculated based on abnormality detection function to determine whether the data was abnormal. The experimental results show that compared with One-Class Support Vector Machine (OC-SVM),Deep Structured Energy Based Model (DSEBM),Deep Autoencoding Gaussian Mixture Model (DAGMM) and Anomaly detection model with Generative Adversarial Network (AnoGAN),the accuracy of the proposed model is improved by 5.8-17.4 percentage points,the recall rate is increased by 1.4-31.4 percentage points,and the F 1 value is increased by 14.18-19.7 percentage points. It can be seen that the network abnormal behavior detection model based on ALI has high recall rate and detection accuracy when the data is unbalanced.

关 键 词:逆向习得推理 异常行为检测 数据不平衡 数据归一化 

分 类 号:TP309[自动化与计算机技术—计算机系统结构] TN915.08[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象