检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王鑫[1,2] 邹磊 王朝坤[4] 彭鹏[5] 冯志勇 WANG Xin;ZOU Lei;WANG Chao-Kun;PENG Peng;FENG Zhi-Yong(College of Intelligence and Computing, Tianjin University, Tianjin 300350, China;Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin 300350, China;Institute of Computer Science and Technology, Peking University, Beijing 100871, China;School of Software, Tsinghua University, Beijing 100084, China;College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China)
机构地区:[1]天津大学智能与计算学部,天津300350 [2]天津市认知计算与应用重点实验室,天津300350 [3]北京大学计算机科学技术研究所,北京100871 [4]清华大学软件学院,北京100084 [5]湖南大学信息科学与工程学院,湖南长沙410082
出 处:《软件学报》2019年第7期2139-2174,共36页Journal of Software
基 金:国家自然科学基金(61572353);天津市自然科学基金(17JCYBJC15400)~~
摘 要:知识图谱是人工智能的重要基石。各领域大规模知识图谱的构建和发布对知识图谱数据管理提出了新的挑战。以数据模型的结构和操作要素为主线,对目前的知识图谱数据管理理论、方法、技术与系统进行研究综述。首先,介绍知识图谱数据模型,包括RDF图模型和属性图模型,介绍5种知识图谱查询语言,包括SPARQL、Cypher、Gremlin、PGQL和G-CORE;然后,介绍知识图谱存储管理方案,包括基于关系的知识图谱存储管理和原生知识图谱存储管理;其次,探讨知识图谱上的图模式匹配、导航式和分析型3种查询操作。同时,介绍主流的知识图谱数据库管理系统,包括RDF三元组库和原生图数据库,描述目前面向知识图谱的分布式系统与框架,给出知识图谱评测基准。最后,展望知识图谱数据管理的未来研究方向。Knowledge graphs have become the cornerstone of artificial intelligence.The construction and publication of large-scale knowledge graphs in various domains have posed new challenges on the data management of knowledge graphs.In this paper,in accordance with the structural and operational elements of a data model,the current theories,methods,technologies,and systems of knowledge graph data management are surveyed.First,the paper introduces knowledge graph data models,including the RDF graph model and the property graph model,and also introduces 5 knowledge graph query languages,including SPARQL,Cypher,Gremlin,PGQL,and G-CORE.Second,the storage management schemes of knowledge graphs are presented,including relational-based and native approaches.Third,three kinds of query operations are discussed,which are graph pattern matching,navigational,and analytical queries.Fourth,the paper introduces mainstream knowledge graph database management systems,which are categorized into RDF triple stores and native graph databases.Meanwhile,the state-of-the-art distributed systems and frameworks that are used for processing knowledge graphs are also described,and benchmarks are presented for knowledge graphs.Finally,the future research directions of knowledge graph data management are put forward as well.
关 键 词:知识图谱 数据管理 数据模型 查询语言 存储管理 查询操作
分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.185.23