检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:巫玲[1] 陈念年[1] 范勇[1] 叶一东[2] Wu Ling;Chen Niannian;Fan Yong;Ye Yidong(School of Computer Science and Technology,Southwest University of Science and Technology,Mianyang,Sichuan 621010,China;Institute of Applied Electronics,Chinese Academy of Engineering Physics,Mianyang,Sichuan 621900,China)
机构地区:[1]西南科技大学计算机科学与技术学院,四川绵阳621010 [2]中国工程物理研究院应用电子学研究所,四川绵阳621900
出 处:《光学学报》2019年第6期304-311,共8页Acta Optica Sinica
摘 要:针对已有的相对角差法面形检测的原理验证装置,提出了一种具有更高稳健性的最小二乘积分面形重建算法。利用相对角差改写了经典最小二乘积分技术的代价函数,避免了积分重建中的测量误差累积的问题,空间复杂度和时间复杂度仍分别为O(N^2)和O(N^3)。仿真结果表明,本文算法的稳健性显著优于Zernike波前重建法与基于样条的最小二乘积分法(SLI);实验结果证明,本文算法可适用于大口径角差法面形检测。A robust least squares integration surface reconstruction algorithm that exploits the relative angle difference is proposed for a topography measurement device. The cost function of the classical least squares integration technique is rewritten based on relative angle difference to avoid accumulation of measurement errors. The space and time complexities are O(N^2) and O(N^3), respectively. Simulation results demonstrate that the robustness of the proposed algorithm is significantly better than that of Zernike’s wavefront reconstruction method and spline-based least squares integration method. Experiments show that the algorithm can be applied to topography measurement with large aperture angle difference method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28