相对角差法重建大口径平面光学元件面形  被引量:2

Surface Reconstruction of Large Aperture Plane Optical Components Based on Method of Relative Angle Difference

在线阅读下载全文

作  者:巫玲[1] 陈念年[1] 范勇[1] 叶一东[2] Wu Ling;Chen Niannian;Fan Yong;Ye Yidong(School of Computer Science and Technology,Southwest University of Science and Technology,Mianyang,Sichuan 621010,China;Institute of Applied Electronics,Chinese Academy of Engineering Physics,Mianyang,Sichuan 621900,China)

机构地区:[1]西南科技大学计算机科学与技术学院,四川绵阳621010 [2]中国工程物理研究院应用电子学研究所,四川绵阳621900

出  处:《光学学报》2019年第6期304-311,共8页Acta Optica Sinica

摘  要:针对已有的相对角差法面形检测的原理验证装置,提出了一种具有更高稳健性的最小二乘积分面形重建算法。利用相对角差改写了经典最小二乘积分技术的代价函数,避免了积分重建中的测量误差累积的问题,空间复杂度和时间复杂度仍分别为O(N^2)和O(N^3)。仿真结果表明,本文算法的稳健性显著优于Zernike波前重建法与基于样条的最小二乘积分法(SLI);实验结果证明,本文算法可适用于大口径角差法面形检测。A robust least squares integration surface reconstruction algorithm that exploits the relative angle difference is proposed for a topography measurement device. The cost function of the classical least squares integration technique is rewritten based on relative angle difference to avoid accumulation of measurement errors. The space and time complexities are O(N^2) and O(N^3), respectively. Simulation results demonstrate that the robustness of the proposed algorithm is significantly better than that of Zernike’s wavefront reconstruction method and spline-based least squares integration method. Experiments show that the algorithm can be applied to topography measurement with large aperture angle difference method.

关 键 词:测量 面形检测 角差法 相对测量 最小二乘积分重建 大口径平面光学元件 

分 类 号:TH741[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象