检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈良吕 陈法敬[2] 夏宇[3] CHEN Liang-lv;CHEN Fa-jing;XIA Yu(Chongqing Institute of Meteorological Sciences,Chongqing 401147,China;NWP Center of China Meteorological Administration,Beijing 100081,China;School of Atmospheric Sciences,Nanjing University of Information Technology,Nanjing 210044,China)
机构地区:[1]重庆市气象科学研究所,重庆401147 [2]中国气象局数值预报中心,北京100081 [3]南京信息工程大学大气科学学院,南京210044
出 处:《西南大学学报(自然科学版)》2019年第7期116-124,共9页Journal of Southwest University(Natural Science Edition)
基 金:重庆市气象局青年基金项目(QNJJ-201905);重庆市气象局数值模式应用技术攻关团队项目(YWGGTD-201715);中国气象局公益性行业科研专项项目(GYHY201506005)
摘 要:本研究简要介绍了SEEPS方法的具体计算方案,将该方法应用到重庆地区的降水数值预报检验中,对重庆地区常用的3个业务数值模式2017年全年的预报结果进行了检验评估,并对比分析了3个模式降水预报性能的总体差异及时空分布特征.结果表明,综合各个预报时效2017年全年区域平均SEEPS技巧评分的结果, EC模式的降水预报性能最优,其次是SWC-WARMS, CQMFS最差;综合各个预报时效2017年1-12月逐月区域平均的SEEPS技巧评分的结果, SWC-WARMS各月的预报性能均优于CQMFS. SWC-WARMS和CQMFS的降水预报性能在7月和8月总体而言优于EC模式,其余各月均差于EC模式;对于同一区域全年平均的降水数值预报性能, EC模式最优,其次是SWC-WARMS, CQMFS最差.各个模式的SEEPS技巧评分在四川盆地东部偏东地区均存在大值中心. EC模式总体表现出在重庆的东北部偏东地区和中西部偏北地区的SEEPS技巧评分优于重庆的其他地区. SWC-WARMS总体表现出在重庆东南部地区的SEEPS技巧评分优于重庆的其他地区. CQMFS总体表现出在重庆的东南部地区和重庆的中西部偏北地区的SEEPS技巧评分优于其他地区.This paper gives a brief account of the specific calculation schemes of the SEEPS(stable equitable error in probability space) method, which is applied to the numerical prediction performance analysis of precipitation in Chongqing area. The annual forecast results of three models, which were operationally implemented and commonly used in Chongqing area in 2017, were tested and evaluated, and the overall difference and temporal and spatial characteristics of the three models were compared and analyzed. The results showed that, in general, based on the results of the regional average SEEPS skill score in 2017, the prediction performance of EC model was the best, followed in sequence by SWC-WARMS and CQMFS;and based on the results of the monthly mean SEEPS skill score in 2017, the prediction performance of SWC-WARMS in each month was better than that of CQMFS. The precipitation forecast performance SWC-WARMS and CQMFS in July and August was, as a whole, better than that of the EC model, but was inferior to that of EC in other months. For the average annual precipitation prediction performance of the same region, the EC model was the best, followed in order by SWC-WARMS and CQMFS. The SEEPS skill score of each model had a large-value center in the eastern part of the Sichuan basin. The EC model showed that the SEEPS skill score was generally higher in the northeast-by-east and mid-west-by-north parts of Chongqing than in the other areas of the city. The SWC-WARMS overall showed that the SEEPS skill score in the southeast of Chongqing was higher than in the other areas. The CQMFS overall showed that the SEEPS skills score in the southeast and mid-west-by-north regions of Chongqing was higher than that in the other regions.
分 类 号:P426.6[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28