起重机大摆角PD防摇控制方程Runge-Kutta求解  被引量:2

Runge-Kutta Solution of PD Anti-sway Control Non-linear Equation for Crane with Large Sway Angle

在线阅读下载全文

作  者:刘海江[1,2] 孙玉国 LIU Hai-jiang;SUN Yu-guo(School of Mechanical and Energy Engineering,Tongji University,Shanghai 200092,China;TongJi-Taicang Institute ofHigh Technology,Taicang 215400,China;School of Optical-electrical and Computer Engineering,University of Shanghai for Sceince and Technology,Shanghai 200093,China)

机构地区:[1]同济大学机械与能源工程学院,上海200092 [2]同济大学太仓高新技术研究院,江苏太仓215400 [3]上海理工大学光电信息与计算机工程学院,上海200093

出  处:《机电工程技术》2019年第6期73-74,167,共3页Mechanical & Electrical Engineering Technology

基  金:太仓市科技计划项目(编号:TC2017DYDS14)

摘  要:针对桥式起重机大摆角防摇控制问题,建立非零初始条件“小车-吊重”大摆角非线性PD(比例微分)控制动力学方程。给出非线性微分方程的Runge-Kutta数值求解方法并进行了实例计算。计算结果表明:PD控制本质上是对有经验司机“跟车操作”的模拟;比例系数Kp的引入相当于添加了系统等效阻尼,微分系数Kd的引入相当于增加了系统等效质量。这为后续的PLC控制编程提供了动力学参考。A nonlinear PD(proportional differential)controlling equation for a large swing angle of the"trolley-crane"was presented.The influence of non-zero initial conditions were fully considered.The solution steps of Runge-Kutta method were used and a numerical example was given.The results show that the essence of PD control is to simulate the"following operation"of experienced drivers;the introduction of proportional coefficient Kp equals the addition of equivalent damping of the system,and the introduction of differential coefficient Kd equals the addition of equivalent mass of the system.Which provides a dynamic reference for subsequent PLC control programming.

关 键 词:起重机 防摇 PD控制律 非线性系统 数值计算 

分 类 号:TH213[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象