多线性分数次积分算子在加权变指数Herz乘积空间上的有界性  被引量:6

Boundedness of the multilinear fractional integral operators on the product weighted Herz spaces with variable exponents

在线阅读下载全文

作  者:袁玲玲 王瑞梅 赵凯 YUAN Ling-ling;WANG Rui-mei;ZHAO Kai(School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China)

机构地区:[1]青岛大学数学与统计学院

出  处:《云南大学学报(自然科学版)》2019年第4期645-654,共10页Journal of Yunnan University(Natural Sciences Edition)

基  金:国家自然科学基金(11471176)

摘  要:利用加权变指数Lebesgue空间的特征和多线性分数次积分算子的L^p有界性,基于加权变指数Herz空间的定义,运用调和分析实方法进行不等式的估计,证明了多线性分数次积分算子在加权变指数Herz乘积空间的有界性.The definitions and some basic properties of the variable exponent Lebesgue space are mentioned.Then, by the properties of weighted Lebesgue spaces with variable exponents and the boundedness of the multilinear fractional integral operator on L^p, based on the definition of the weighted Herz spaces with variable exponent, using the real methods in harmonic analysis, the boundedness of the multilinear fractional integral operators on the product weighted Herz spaces with variable exponents is obtained.

关 键 词:分数次积分算子 变指数 Herz乘积空间  有界性 

分 类 号:O174.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象