检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Basem I. Selim Lei DU Bo YU Xuanru ZHU
机构地区:[1]School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China [2]Mathematics and Computer Science Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
出 处:《Journal of Mathematical Research with Applications》2019年第4期408-432,共25页数学研究及应用(英文版)
基 金:Supported by the National Natural Sciences Foundation of China(Grant Nos.11501079; 11571061);Part by the Higher Education Commission of Egypt
摘 要:The generalized product bi-conjugate gradient(GPBiCG(m,l))method has been recently proposed as a hybrid variant of the GPBi CG and the Bi CGSTAB methods to solve the linear system Ax=b with non-symmetric coefficient matrix,and its attractive convergence behavior has been authenticated in many numerical experiments.By means of the Kronecker product and the vectorization operator,this paper aims to develop the GPBi CG(m,l)method to solve the general matrix equation■ and the general discrete-time periodic matrix equations■ which include the well-known Lyapunov,Stein,and Sylvester matrix equations that arise in a wide variety of applications in engineering,communications and scientific computations.The accuracy and efficiency of the extended GPBi CG(m,l)method assessed against some existing iterative methods are illustrated by several numerical experiments.The generalized product bi-conjugate gradient(GPBiCG(m,l))method has been recently proposed as a hybrid variant of the GPBi CG and the Bi CGSTAB methods to solve the linear system Ax=b with non-symmetric coefficient matrix,and its attractive convergence behavior has been authenticated in many numerical experiments.By means of the Kronecker product and the vectorization operator,this paper aims to develop the GPBi CG(m,l)method to solve the general matrix equation■and the general discrete-time periodic matrix equations■which include the well-known Lyapunov,Stein,and Sylvester matrix equations that arise in a wide variety of applications in engineering,communications and scientific computations.The accuracy and efficiency of the extended GPBi CG(m,l)method assessed against some existing iterative methods are illustrated by several numerical experiments.
关 键 词:GPBiCG(m l) METHOD Krylov SUBSPACE METHOD matrix EQUATIONS KRONECKER product VECTORIZATION operator
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171